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Foreword

Our group at BBN Technologies has been working at the forefront of the
Semantic Web since 2000, first as part of the DARPA Agent Markup Language
(DAML) program and then in developing a variety of tools, data sets, and
applications for other government and commercial customers. The authors
and technical editor of this book are current or former members of this group,
which has grown to about 30 employees. Semantic Web Programming reflects
our backgrounds as software developers, the experience we’ve gained over
the past eight years, and a number of hard-won insights.

The Semantic Web is an international effort to represent data (includ-
ing World Wide Web data currently designed for human users) in formats
amenable to automated processing, integration, and reasoning. Data is king,
and it provides even greater value when it’s connected with other data sources
to create a linked data web. Current applications include data integration from
mash-ups to the enterprise, improved search, service composition, intelligent
agents, desktop and mobile applications, and collaboration.

Catalyzed by U.S. and EU research programs, the growing community
includes the W3C Semantic Web Activity, a host of large and small vendors,
several Semantic Web and Semantic Technology conference series, and a large
number of open-source developers and projects.

While Web 3.0 is in many ways an appropriate moniker for the Semantic
Web, the Semantic Web has always emphasized Web 2.0 social networking and
collaboration aspects through FOAF, RSS 1.0, various semantic wiki projects,
and participatory collections such as MusicBrainz. Semantic Web ontologies
provide more structure than Web 2.0 tags, microformats, and folksonomies,
while retaining much of their flexibility.

Semantic Web standards including RDF, OWL, and SPARQL continue to
evolve based on usage. A wide range of high-quality tools, many of them
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xxiv Foreword

open source, have been developed for different programming environments.
The Linking Open Data initiative has addressed a critical need by providing
foundational data for many applications and continues to grow. Many tools
and applications are now highly scalable.

Developers often benefit from seeing other people’s code. Throughout
this book, we’ve taken a pragmatic approach, with lots of examples and an
application that spans multiple chapters.

We hope that you’ll also find that Semantic Web technologies provide an
effective means of addressing current and upcoming computing challenges
and that you’ll enjoy working with them as much as we have.

Mike Dean
Ann Arbor, Michigan
November 2008



Introduction

Semantic Web Programming takes the Semantic Web directly and boldly into
solving practical, real-world problems that flexibly deliver real value from
our growing ability to access information and services from our laptop to the
enterprise to the World Wide Web. The chapters form a solid, code-based
path addressing information and service challenges. As the code examples
build, we pragmatically explore the many technologies that form the Semantic
Web, including the knowledge representations such as microformats, Resource
Description Framework (RDF), RDF Schema (RDFS), the Web Ontology Lan-
guage (OWL) including its latest release OWL 2 and Semantic Web Rule
Language (SWRL), Semantic Web programming frameworks such as Jena,
and useful Semantic Web tools. We explore these technologies, not as ends in
themselves but rather for their role and merits in solving real problems. Thus,
your learning is based on results—the results that each technology brings to
address your application challenges.

Semantic Web Programming benefits from our many years of experience
in developing large-scale Semantic Web solutions, building Semantic Web
tools, and contributing to the Semantic Web standards. We know this stuff!
This background provides you with not only an understanding of this new
powerful technology but the ability to apply it directly to your real-world
application and information challenges.

Overview of the Book and Technology

The Semantic Web offers a powerful, practical approach to gain mastery over
the multitude of information and information services. Semantics offer the
leverage to make more information better and not overwhelmingly worse. This
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requires new data representations that improve our ability to capture and
share knowledge and new programming constructs and tools to make this
information work for your application.

This book explores it all through actual data formats, working code, and
tools. We take a developer perspective aimed at application results. We focus
the explanations and justifications on what you need to build and manage
your Semantic Web applications. The multitude of working code examples
throughout the book provides the credibility and insights that truly augment
the background and explanatory text. In many cases, the code does the talking.
We strongly recommend that you get hands on and adjust the examples to your
needs. This will help you gain the understanding and perspective necessary
to put the Semantic Web to work for you immediately.

How This Book Is Organized

The book has 15 chapters organized in four parts. Also included is an extensive
set of references in the appendices for the key technologies.

Part 1: ‘‘Introducing Semantic Web Programming,’’ covers Chapters 1 and 2.
This section quickly introduces you to Semantic Web programming. Chapter 1,
‘‘Preparing to Program a Semantic Web of Data,’’ covers the main Semantic
Web concepts and their relationship with one another. This establishes your
Semantic Web developer vocabulary. Chapter 1 also points out the advantages
and programming impacts; it ends with some compelling examples of the
Semantic Web in use today. Chapter 2, ‘‘Hello Semantic Web World,’’ dives
right into working code with an exhaustive Hello Semantic World Web pro-
gram. The example takes you from setting up your development environment
to using reasoners. The explanations are brief because this chapter is merely
an introduction to the rest of the book. This section is critical if you are new to
the Semantic Web. Seasoned readers may choose to skim these two chapters.

Part 2, ‘‘Foundations of Semantic Web Programming,’’ covers Chapters 3
through 7. Two main areas drive a Semantic Web application: knowl-
edge representation and application integration. This section focuses on the
former—representing and manipulating knowledge. Chapter 3, ‘‘Modeling
Information,’’ establishes the data model through RDF. Chapter 4, ‘‘Incorpo-
rating Semantics,’’ adds an ontology to create a knowledge model using RDFS
and OWL 2. Chapter 5, ‘‘Modeling Knowledge in the Real World,’’ exercises
the working ontology via application frameworks and reasoners. Chapter 6,
‘‘Discovering Information,’’ dives into the knowledge model to extract use-
ful information through search, navigation, and formal queries via SPARQL.
Chapter 7, ‘‘Adding Rules,’’ rounds out the knowledge representation through
an exploration of the semantic rule languages, including the W3C standard
SWRL.
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Part 3, ‘‘Building Semantic Web Applications,’’ covers Chapters 8 through
11. This section deals with the second main area—integrating the knowl-
edgebase with an application that acts upon it. This part provides a solid
programming base for the Semantic Web. Chapter 8, ‘‘Applying a Program-
ming Framework,’’ fully explores Semantic Web frameworks with extensive
examples from the Jena Semantic Web Framework. The chapter ends with an
outline of our FriendTracker Semantic Web application. This example spans
the next three chapters as we explore methods to integrate, align, and output
data and information in many formats and locations. Chapter 9, ‘‘Combin-
ing Information,’’ focuses on integrating the information into a knowledge
model from sources such as relational databases, web services, and other
formats. Chapter 10, ‘‘Aligning Information,’’ focuses on aligning the data
along ontological concepts to unify the disparate information. Chapter 11,
‘‘Sharing Information,’’ outputs the information into many formats, including
RDFa, microformats, SPARQL endpoints, and more. All along we add to the
FriendTracker application to directly demonstrate the programming concepts.

Part 4, ‘‘Expanding Semantic Web Programming,’’ covers chapters 12
through 15. Here we build on your solid base of knowledge representa-
tion and Semantic Web application development to expand into powerful,
useful areas, including semantic services, time and space, Semantic Web archi-
tectures and best practices, and unfolding Semantic Web tools that are almost
here. Chapter 12, ‘‘Developing and Using Semantic Services,’’ adds semantics
to services to allow them to participate in the Semantic Web. Chapter 13,
‘‘Managing Space and Time,’’ adds space and time considerations to your
knowledge representations. Chapter 14, ‘‘Applying Patterns and Best Prac-
tices,’’ is a retrospective of sorts. It builds on everything we covered so far in
the book by presenting a series of architecture patterns for constructing var-
ious Semantic Web applications. Chapter 15, ‘‘Moving Forward,’’ concludes
the book by peering into the future. It focuses on four critical, evolving areas
for the Semantic Web: ontology management, advanced integration and dis-
tribution, advanced reasoning, and visualization. This provides a solid view
into what is on its way in the actively evolving Semantic Web.

Who Should Read This Book

The book provides a comprehensive, practical view for developing applica-
tions that use the Semantic Web. The Semantic Web takes advantage of the
multitude of distributed information and services that exist in the World Wide
Web, the business enterprise, and your personal resources. Therefore, many
technical readers would benefit from this book whether you focus on the entire
application or only the information.
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Developers gain first-hand experience with the many code examples
throughout the book. These include both applications developers and informa-
tion developers who focus on data in its many forms, from database schemas to
XML formats. This book provides all the tools, background, and rich examples
to jump-start your applications.

Architects gain insights into the role of the Semantic Web within a larger
application. The Semantic Web offers many benefits to any system that uses
information—which is just about any system—and can quickly extend your
system’s capabilities to better leverage available information and services. The
overall applications serve the system architect, whereas the detailed informa-
tion and data management areas benefit information architects responsible for
data formats and data processing.

Technical management gains insight into the power, risks, and benefits of
the Semantic Web. The Semantic Web is a strategic technology—one that truly
provides a solution with a significant advantage. It offers a new approach
to extremely tough but lucrative challenges that employ vast amounts of
information and services. Awareness of the Semantic Web is required for any
solution that depends on dynamic information and service resources. The
code examples provide credibility to the technology and insights into its own
challenges for better planning.

Tools You Will Need

We highly recommend that you reinforce your learning by downloading
and customizing the numerous coding examples throughout the book. All
the software tools are open source and readily available from the World
Wide Web. We include all necessary links and instructions. Your computer
is compatible with all of these tools as long your operating system supports
a Java 1.5 virtual machine. That’s it! As we cover each tool in the book, we
provide download, installation, and configuration instructions. In addition,
we summarize all the tools with instructions in Appendix F.

What’s on the Website

The book comes with an extensive website companion at http://semwebpro-
gramming.org. Here you can access all related articles, complete code examples,
and ontologies, as well as have an opportunity to get involved in the ongoing
discussions and activities. The site also contains any book and code updates
to reflect the continual expansion and evolution of the Semantic Web. We
welcome comments on the book and examples.
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Our site includes an active blog and wiki awaiting your contributions and
insights. The wiki is a semantic wiki and offers a SPARQL endpoint. Feel
free to register for either the blog or the wiki or both and enter questions or
get in on the discussion. We find that the best learning occurs through your
questions—ask away.

Summary (From Here, Up Next, and So On)

Semantic Web programming is an exciting, powerful new approach to better
use the vast information and services available. With all of this power and
excitement come a new vocabulary, new tools, and new insights into build-
ing working applications. The chapters ahead provide a smooth, expanding
path to reveal, in a practical way, methods to build effective Semantic Web
applications—applications that incorporate the rich, dynamic information and
service landscape accessible today. Let’s get going.





P a r t

I
Introducing Semantic Web

Programming

The goal of this section is to quickly introduce you to
Semantic Web programming. This section establishes a
launchpad from which you can begin your exploration.

Chapter 1 defines the Semantic Web and the com-
ponents and concepts critical to programming with it.
It identifies, from the programmer’s perspective, the
characteristics and advantages of the Semantic Web
that can be leveraged to provide innovative solutions
to common problems. The chapter discusses the many
roadblocks, myths, and hype that emerge with any
new area of technology like the Semantic Web.

This leads to a brief history of the Semantic Web,
which provides a useful perspective on its solid foun-
dations. The Semantic Web is not a flash in the pan
but rather an evolutionary step in our ability to share
and use information. Finally, the chapter ends by pre-
senting a series of example Semantic Web applications.
These examples introduce some of the terms, struc-
tures, and programming considerations that you will
see throughout the rest of the book. After Chapter 1,
you will be ready to jump right into Semantic Web
programming.

Chapter 2 is your opportunity to say a solid ‘‘Hello’’
to the Semantic Web. The chapter presents a tour
of the canonical ‘‘Hello World’’ example application
from the perspective of the Semantic Web. It demon-
strates how a Semantic Web knowledge model can
integrate with an application and be used to separate
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domain-specific business logic from the program itself. The tour extends a
common example-saying hello to your friends. These ‘‘Hellos’’ build through
code examples that touch on the main topics of the book. After quickly
establishing your development environment, the tour takes you through
setting up an ontology, adding data from multiple sources, aligning different
data sources, reasoning, rules, querying, and finally outputting results in
various formats. It’s a whirlwind tour that gives you a taste of what is to come.

Together, the two chapters in this section provide a quick taste of the book
and prepare you to move into the depth of the chapters ahead.



C H A P T E R

1
Preparing to Program a
Semantic Web of Data

‘‘The Semantic Web is not a separate Web but an extension of the current one, in
which information is given well-defined meaning, better enabling computers and

people to work in cooperation.’’

—Tim Berners-Lee

Welcome to Semantic Web programming—a powerful way to access, use,
and share information. Our approach gets you programming quickly through
hands-on, practical examples. We maintain a programmer’s perspective, not
a philosopher’s perspective, throughout the book. We focus on applying
the Semantic Web to real-world solutions rather than long justifications and
explanations.

First, we need to establish a Semantic Web programming foundation. This
foundation orients you to this new technology with its jargon and its attitude.
The foundation also provides a justification for your learning investment, an
investment we do not take lightly.

Our approach and examples come from years of building Semantic Web
applications. Our applications employ the Semantic Web to make useable sense
out of large, distributed information found throughout the World Wide Web.

The objectives of this chapter are to:

Form a useful, pragmatic definition of the Semantic Web

Identify the major components of a Semantic Web appli-
cation and describe how they relate to one another

Outline how the Semantic Web impacts programming applications

Detail the roadblocks, myths, and hype regarding the often misunder-
stood and misused term Semantic Web

3
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Understand the origin and foundation of the Semantic Web

Gain exposure to different, real-world solutions that employ the Seman-
tic Web

Semantic Web programming introduces many new terms and approaches
that are used throughout the book. This chapter offers a preliminary definition,
one on which each chapter expands.

The concept map in Figure 1-1 outlines the chapter. Two main legs establish
the key areas: the Semantic Web and Programming in the Semantic Web.

Semantic
Web

Programming

Semantic Web (SW)

Examples

Data Centric
Sharing 

Data
Dynamic

Data

Expressive
Data

Programming

Impacts Roadblocks
Myths
Hype

Definition

Origin Components Features

SW toolsSW

Statement Language

InstanceOntology

History

TBLGraph
Theory

DL

Foundation

KB

ReasonersIDE

Frameworks

Expressiveness
Inference
Integration
Unique

Figure 1-1 Semantic Web concept map

We start with the definition leading to the Semantic Web’s components,
features, and origins. Then we examine its programming implications.

Defining the Semantic Web

A definition for the Semantic Web begins with defining semantic. Semantic
simply means meaning. Meaning enables a more effective use of the underlying
data. Meaning is often absent from most information sources, requiring users
or complex programming instructions to supply it. For example, web pages
are filled with information and associated tags. Most of the tags represent
formatting instructions, such as <H1> to indicate a major heading. Semanti-
cally, we know that words surrounded by <H1> tags are more important to
the reader than other text because of the meaning of H1. Some web pages
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add basic semantics for search engines using the <META> tag; however, they
are merely isolated keywords and lack linkages to provide a more meaningful
context. These semantics are weak and limit searches to exact matches. Simi-
larly, databases contain data and limited semantic hints, if well-named tables
and columns surround the data.

Semantics give a keyword symbol useful meaning through the establish-
ment of relationships. For example, a standalone keyword such as building
exists on a web page devoted to ontologies. The <META> tag surrounds the
building keyword to indicate its importance. However, does building mean
constructing an ontology or ontologies that focus on constructing buildings?
The awkwardness of the previous sentence points out the difficulty in sim-
ply expressing semantics in English. Semantics are left for the human reader
to interpret. However, if the keyword relates to other keywords in defined
relationships, a web of data or context forms that reveals semantics. So
building relates to various other keywords such as architect, building plans,
construction site, and so on—the relationships expose semantics. If a formal
standard captures the arrangement of terms, the terms adhere to specified
grammar rules. It is even better if the terms themselves form an adopted
standard or language. The two standards together, grammar and language,
help incorporate meaning, or semantics. As this contextual web of grammar
rules and language terms expands through relationships, the semantics are
further enriched.

The Semantic Web is simply a web of data described and linked in ways
to establish context or semantics that adhere to defined grammar and lan-
guage constructs.

Programmatically, your application can add semantics through program-
ming instructions; however, there is no formal standard for such programmed
semantics. In addition, aggregation, sharing, and validation are usually diffi-
cult or not possible. The semantics are lost in a maze of if/else programming
statements, database lookups, and many other programming techniques.
This makes it difficult to take advantage of this rich information or even to
recognize it all. The nonstandard, dispersed way of programmatic semantic
capture places restrictions on it and makes it unnecessarily complex, essentially
obfuscated. Standing alone, the meaning of various terms such as building is
simply lost.

The Semantic Web addresses semantics through standardized connections
to related information. This includes labeling data unique and addressable.
Thus, your program can easily tell if this building is the same as another building
reference. Each unique data element then connects to a larger context, or web.
The web offers potential pathways to its definition, relationships to a concep-
tual hierarchy, relationships to associated information, and relationships to
specific instances of building. The flexibility of a web form enables connections
to all the necessary information, including logic rules. The pathways and terms
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form a domain vocabulary or ontology. Semantic Web applications typically
use many ontologies, each chosen for a required information area. The appli-
cations can choose to standardize on specific ontologies and translate to ones
employed by other applications. Advanced Semantic Web applications could
automatically align vocabularies using advanced information techniques that
logically employ the many paths within the Semantic Web. Thus, the rich
relationships and the many relationship types each contribute to establish
semantics—the Semantic Web.

Figure 1-2 illustrates the difference between a stranded keyword, plane, and
a Semantic Web of data related to the keyword, plane. The figure uses a graph
perspective for easier visualization of the relationships.

p: Transportation
Vehicle

p: Jet

p: 747
p: Boeing

m: FA728

p: Manufacturer

p: FlightPlan

p: isDefinedPlane

p: Prop

p: Pilot

p: Engine

p: Plane

p: manufacturedBy rdfs: subClassOf

p: hasPilot

rdfs: subClassOf

rdfs: subClassOfp: manufacturedBy

rdfs: subClassOf rdfs: subClassOf

p: has
Engine

p: has
Manufacturer

p: hasPlan

p: is
Defined

Figure 1-2 Isolation versus the Semantic Web

Shortly we will outline all the major components of the Semantic Web.
For now, the fundamental building block of the Semantic Web is a statement.
This might sound too generic and basic, but this simplicity creates many
possibilities. Throughout the book, we explore all types of statements contained
in the Semantic Web, statements that describe concepts, logic, restrictions, and
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individuals. The statements share the same standards to enable sharing and
integration, which take advantage of the semantics.

The Semantic Web is best understood in comparison to the World Wide Web
(WWW). Table 1-1 compares the two. Rather than being a substitute for the
WWW, the Semantic Web extends it through useable, standardized semantics
that draw deeply on academic research in knowledge representation and logic
to approach the goal of ubiquitous automated information sharing.

Table 1-1 Comparison of WWW and SW

FEATURE WWW SEMANTIC WEB

Fundamental component Unstructured content Formal statements

Primary audience Humans Applications

Links Indicate location Indicate location and meaning

Primary vocabulary Formatting instructions Semantics and logic

Logic Informal/nonstandard Description logic

The WWW consists primarily of content for human consumption. Content
links to other content on the WWW via the Universal Resource Locator (URL).
The URL relies on surrounding context (if any) to communicate the purpose of
the link that it represents; usually the user infers the semantics. Web content
typically contains formatting instructions for a nice presentation, again for
human consumption. WWW content does not have any formal logical con-
structs. Correspondingly, the Semantic Web consists primarily of statements
for application consumption. The statements link together via constructs that
can form semantics, the meaning of the link. Thus, link semantics provide
a defined meaningful path rather than a user-interpreted one. The statements
may also contain logic that allows further interpretation and inference of
the statements.

The flexibility and many types of Semantic Web statements allow the
definition and organization of information to form rich expressions, simplify
integration and sharing, enable inference, and allow meaningful information
extractions while the information remains distributed, dynamic, and diverse.
Simply put, the Semantic Web improves your application’s ability to effectively
utilize large amounts of diverse information on the scale of the WWW. This
is accomplished through a structured, standardized approach for describing
information so as to allow rich information operations.

Semantic relationships form the Semantic Web. The relationships include
definitions, associations, aggregations, and restrictions. A graph helps visual-
ize a collection of statements. Figure 1-3 shows a small graph of statements.
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Statements and corresponding relationships establish both concepts (e.g., a
Person has a birth date; note the double lines) and instances (e.g., John is a
friend of Bill). Statements that define concepts and their relationships form an
ontology. Statements that refer to individuals form instance data. Statements
can be asserted or inferred. The former requires the application to create the
statement directly, to assert the statement (solid lines). The latter requires a
reasoner to infer additional statements logically (dashed lines). That John is an
associate of Bill is inferred from the asserted statements. Future chapters cover
these concepts in more detail.

p: Person

s: Johns: Bill s: Sally

1985-04-17 1958-07-04

p: Date

rdf: type
rdf: type

p: hasBirthDate

p: hasBirthDate
p: hasFriend

rdfs: subPropertyOf

p: hasBirthDate

p: hasAssociation

rdf: type (inferred)

p: hasAssociation 
(inferred)

p: hasAssociation

p: hasFriend

Figure 1-3 Example graph

Semantic Web statements employ a Semantic Web vocabulary and language
to identify the different types of statements and relationships. Various tools
and application frameworks use the statements through an interpretation
of the vocabulary and language. Exploring and applying these tools and
frameworks in relationship with the Semantic Web keywords is the focus of
this book.

The Semantic Web offers several languages. Rather than have one language
fit all information and programming needs, the Semantic Web offers a range
from basic to complex. This provides Semantic Web applications with choices
to balance their needs for performance, integration, and expressiveness.

A set of statements that contribute to the Semantic Web exists primarily
in two forms; knowledgebases and files. Knowledgebases offer dynamic,
extensible storage similar to relational databases. Files typically contain static
statements. Table 1-2 compares relational databases and knowledgebases.
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Table 1-2 Comparison of Relational Databases and KnowledgeBases

FEATURE RELATIONAL DATABASE KNOWLEDGEBASE

Structure Schema Ontology statements

Data Rows Instance statements

Administration language DDL Ontology statements

Query language SQL SPARQL

Relationships Foreign keys Multidimensional

Logic External of database/triggers Formal logic statements

Uniqueness Key for table URI

Relational databases depend on a schema for structure. A knowledgebase
depends on ontology statements to establish structure. Relational databases
are limited to one kind of relationship, the foreign key. The Semantic Web
offers multidimensional relationships such as inheritance, part of, associated
with, and many other types, including logical relationships and constraints. An
important note is that the language used to form structure and the instances
themselves is the same language in knowledgebases but quite different in
relational databases. Relational databases offer a different language, Data
Description Language (DDL), to establish the creation of the schema. In
relational databases, adding a table or column is very different from adding a
row. Knowledgebases really have no parallel because the regular statements
define the structure or schema of the knowledgebase as well as individuals or
instances. This has many advantages that we will explore in future chapters.

Take a look at the Semantic Web. Go to http://www.geonames.organd build
a query. The application consists of many integrated information sources. The
application is based on the ontology at http://www.geonames.org/ontology.
Your Semantic Web application could also tap directly into this source and
instantly gain access to this large, dynamic knowledgebase. These queries go
well beyond simple tag or keyword searching and, therefore, provide a more
focused extraction into a large information base.

One last area to consider is the Semantic Web’s relationship with other
technologies and approaches. The Semantic Web complements rather than
replaces other information applications. It extends the existing WWW rather
than competes with it. The Semantic Web offers powerful semantics that
can enrich existing data sources, such as relational databases, web pages,
and web services, or create new semantic data sources. All types of appli-
cations can benefit from the Semantic Web, including standalone desktop
applications, mission-critical enterprise applications, and large-scale web
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applications/services. The Semantic Web causes an evolution in the cur-
rent Web to offer richer, more meaningful interactions with information. Our
solutions throughout the book touch on these areas to illustrate the many ways
the Semantic Web can enhance your software solutions.

Identifying the Major Programming Components

A Semantic Web application consists of several discrete components. Future
chapters examine each one in detail and the programming examples make
extensive use of each. First, we must define each one, note its purpose, and
outline how the components contribute to form effective Semantic Web solu-
tions. Some we have already introduced. They fall into two major categories:
major Semantic Web components and the associated Semantic Web tools.

Figure 1-4 illustrates the major components surrounded by tools.

Knowledgebase

Frameworks

URI

Construction

Interrogation

Rules

Re
as

on
er

Tools

Instance Data

Ontology
Statement

Language

Figure 1-4 Major Semantic Web components

The core components consist of a Semantic Web statement, a Uniform
Resource Identifier (URI), Semantic Web languages, an ontology, and instance
data.

Statement: The statement forms the foundation of the Semantic
Web. Each statement consists of multiple elements that typically
form a triple. The triple consists of a subject, predicate, and object
(e.g., John isType Person). The simplicity belies the aggregated
complexity, as a solution combines thousands, even billions of these
formal statements. Statements define information structure, specific
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instances, and limits on that structure. Statements relate to one
another to form the data web that constitutes the Semantic Web.
The simple approach achieves powerful, flexible expressions.

URI: A Uniform Resource Identifier provides a unique name for
items contained in a statement across the entire Internet. Thus, each
component of a statement—subject, predicate, and object—contains
a URI to affirm its identity throughout the entire WWW. This
eliminates naming conflicts, ensures that two items are the same or
not, and can also provide a path to additional information. A URI
provides an expansive namespace—key to addressability regardless
of scale. A URI could include a Uniform Resource Locator (URL),
which may be dereferenced for useful additional information, or
an abstract Uniform Resource Name (URN). Thus, the URI can also
offer an accessible location contained within the URL. This extends to
Internationalized Resource Identifiers (IRIs) covered in Chapter 3.

Language: Statements are expressed in accordance with a Semantic
Web language. The language consists of a set of keywords that
provide instruction to the various Semantic Web tools. In keeping
with the variety and dynamics of the Internet, there are several
languages for you to choose from. The languages offer various
degrees of complexity and semantic expressiveness. Therefore your
Semantic Web solutions can balance performance requirements
and expressiveness. Higher levels of expressiveness often demand
additional processing and storage resources. Future chapters cover
all the terms contained in each language and their purposes.

Ontology: An ontology consists of statements that define concepts,
relationships, and constraints. It is analogous to a database schema or
an object-oriented class diagram. The ontology forms an information
domain model. Many rich ontologies exist for incorporation into your
applications. Your applications can use them directly or adapt them
to your specific needs. An ontology may capture depth in areas such
as finance and medicine, or capture breath in describing common
objects, or present a hybrid of depth and breath. An effective ontology
encourages communication across applications within the ontology’s
perspective. Of course, your Semantic Web solutions can create an
ontology from scratch, but this isn’t our recommendation. Instead, it is
best when a Semantic Web application taps into the existing ontologies
covering many domains. Using or augmenting an existing ontology
leverages a well-thought-out and tested information domain and pro-
vides your solution with higher quality and greater development speed.
Your added statements can focus on forming the ontology for your
specific problem domain while leveraging ontologies from elsewhere.
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Instance Data: Instance data is the statements containing infor-
mation about specific instances rather than a generic concept.
John is an instance, whereas person is a concept or class. This is
analogous to objects/instances in an object-oriented program.
Interestingly enough, instance data need not bind to the ontol-
ogy (although in many cases this is quite useful). Instance data
forms the bulk of the Semantic Web. An ontology containing the
concept person may be used by millions of instances of person.

In order to exercise the Semantic Web, you need tools and frame-
works. Tools come in four types: construction tools to build and
evolve a Semantic Web application, interrogation tools to explore
the Semantic Web, reasoners to add inference to the Semantic
Web, and rules engines to expand the Semantic Web. Semantic
frameworks package these tools into an integrated suite.

Construction tools: These tools allow you or your application
to construct and integrate a Semantic Web through the creation
or import of statements for the ontology and instances. Several
GUI-based tools allow you to see and explore your data web to form
a useful Semantic Web editor. Several programming suites outline
an application-programming interface (API) to integrate with your
program.

Interrogation tools: These tools navigate through the Seman-
tic Web to return a requested response. There are various
interrogation methods ranging from simple graph navigation,
to search, to a full query language. Effective interrogation surfaces the
usefulness of the Semantic Web.

Reasoners: Reasoners add inference to your Semantic Web. Inference
creates logical additions that offer classification and realization. Classifi-
cation populates the class structure, allowing concepts and relationships
to relate properly to others, such as a person is a living thing, father is
a parent, married is a type of relationship, or married is a symmetric rela-
tionship. Realization offers the same, for example, the John H instance is
the same as the J H instance. There are several types of reasoners offer-
ing various levels of reasoning that future chapters explore. Reason-
ers often plug into the other tools and frameworks. Reasoners leverage
asserted statements to create logically valid ancillary statements.

Rules engines: Rules engines support inference typically beyond
what can be deduced from description logic. They add a powerful
dimension to the knowledge constructs. Rules enable the merging
ontologies and other larger logic tasks, including programming
methods such as count and string searches. Rules engines are
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driven by rules that can be considered part of the overall knowledge
representation. Each rule engine adheres to a given rule language.
Future chapters explore several of the available rules engines.

Semantic frameworks: These package the tools listed above to
work as an integrated unit. Our book focuses on open-source
alternatives for both a graphic integrated development environ-
ment (IDE) and an application programming interface (API).
This allows you to get started programming immediately. There
are also several excellent commercial semantic frameworks.

Statements, URIs, languages, ontologies, and instance data make up the
Semantic Web, the connected semantic information. Semantic Web tools
build, manipulate, interrogate, and enrich the Semantic Web. The book
explores both in parallel with growing sophistication with each chapter.

Determining Impacts on Programming

In order for your applications to take full advantage of the Semantic Web and
its tools, your applications must adapt to its expectations and impacts. We
organize the programming impacts into four categories.

Web data–centric: Your Semantic Web application should place data at
its center. Data is key.

Semantic data: Your Semantic Web application should place
meaning directly within the data rather than within program-
ming instructions or pushed out for user interpretation.

Data integration/sharing: Your Semantic Web application should
attempt to access and share rich information resources throughout the
WWW when appropriate, including taking advantage of the many exist-
ing data sources.

Dynamic data: Your Semantic Web application should enable dynamic,
run-time changes to the structure and contents of your information.

These four impacts potentially change the way you design and program
an application. They guide your solution to make optimal use of the
Semantic Web. Figure 1-5 illustrates the four programming impacts.

Establishing a Web Data–Centric Perspective
Most applications are centered on programming instructions. They revolve
around the program: if/then, while, for, int . . . . A Semantic Web application
is just the opposite. It is all about the data. The richness of Semantic Web
data lightens the programming burden. This decouples the data from the



14 Part I ■ Introducing Semantic Web Programming

programming instructions and produces a cleaner, more flexible solution.
The programming instructions focus on programmatic chores while leaving
complex information representation within the Semantic Web.

Data

Semantic

New
Data

New
Data

New
Data Data

Semantic

Data

Semantic

New
Data

Your Semantic Web Application

New
Data

Integration and Sharing

Figure 1-5 Four programming impacts of the Semantic Web

The Semantic Web application is web-centric; it takes advantage of the scale,
diversity, and distribution found on the WWW. Many current applications
struggle with these issues. They are unable to take full advantage of the
WWW and thus remain trapped behind firewalls, serving in a limited, isolated
capacity. The Semantic Web takes advantage of the size and diversity of
WWW through the establishment of standard, expressive information. It was
designed to take advantage of the quantity, diversity, and distribution found
in the WWW.

Your programming perspective advances from a small, often-isolated,
program-centered perspective (and in this case even enterprise computing
could be considered small) to a global, interdependent, web-centered data
perspective.

Expressing Semantic Data
The Semantic Web employs a set of new information standards, standards that
others can share. As participation and adoption grow, your applications can
quickly incorporate new, rich information sources. Standards in the WWW
released useful content, mostly for humans. Standards applied in open-source
software released powerful programs, many of which became application
standards, such as the Apache Web Server. Now Semantic Web standards
open up useful, rich information.
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The rich standards in the Semantic Web extend well beyond syntax into
forming a semantic standard. Syntax enables technical operations through
the identification of the actual content. Syntax distinguishes data but not
knowledge. Another part of the program—or often the end user—provides
the meaning.

Syntax identifies special data items. The syntax of HTML identifies special
data items called tags. Tags have proven helpful in many information-rich
areas like photos and web pages. A single concept can have many tags. Tags
can be ambiguous, and it is often difficult to discern what a specific tag means.
Tags are often atomic and isolated; a boat tag is completely independent from
a yacht tag. Without semantics, a boat tag and yacht tag reveal no similarities.
The Semantic Web goes beyond tags. The Semantic Web connects these concepts
through its web to improve the semantics and construct an expansive context
for application consumption.

The Semantic Web enables higher levels of information expressiveness. Limits
on information expressiveness challenge programming solutions. Variables,
structures, relational tables, and so on all have their limits and peculiarities.
Databases, for example, typically constrain the type of data (e.g., integer)
but not its use (e.g., only on Fridays) or range (e.g., values between 5 and
9). Applications must absorb this lack of expressiveness through additional
programming instructions. Thus, valuable knowledge is distributed haphaz-
ardly between data storage and programming instructions due to its inherent
limitations. This often leads to brittle, inflexible code and misinterpretations,
multiple interpretations, and errors. The Semantic Web offers extensive meth-
ods to define information, its relationships to other information, its conceptual
heritage, and logical formation. This allows your program to capture more of
its intelligence in one standardized way—the Semantic Web.

Relationships take on a primary role in the Semantic Web. In fact, they are
the very fabric of the Semantic Web. Object-oriented solutions make relation-
ships secondary to the objects themselves. Relationships do not exist outside
of an object. Relationships are dependent on their associated object class. Rela-
tionships cannot be repurposed for other classes. Relationships in the Semantic
Web exist distinct from the concepts that they join. Relationships are free to join
any collection of statements. This allows relationships to have inheritance and
restriction rules of their own. For example, a social network relationship within
the Semantic Web could offer an associatedWith relationship that contains
a subrelationship ownsBy and another subrelationship friendOf. Figure 1-6
illustrates an example graph of these relationships.

Due to the inheritance of the associatedWith relationship, an application
could query for all assocatedWith data. This would include both people and,
in this case, cars.

Similarly, statements that refer to instances, or instance statements, are also
held in distinct regard. Instances are somewhat analogous to objects in an
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object-oriented solution. An object in an object-oriented solution is dependent
on its defined class. In fact, the object is defined as an instance of its associated
class. The object’s identity emerges directly from its classes. An object is
bound for its lifetime to its class. The Semantic Web offers flexibility with
instances. An instance is not permanently bound to any class or set of classes.
In fact, an instance can have no class at all and merely stand alone as an
instance statement or be associated with multiple classes. This allows the
application to add instances before it understands their connections to classes.
Your application can dynamically change the association of an instance with
its class. Your application can also assign multiple classes to a given instance.
This allows the flexibility to form and capture information independent from
class definitions. These assignments of instances to class can occur at any time.

s: John

s: OldCars: Joe

p: Entity

p: assocationWith

p: friendOf p: ownsBy

p: friendOf

rdfs: subPropertyOfrdfs: subPropertyOf

p: assocationWith p: assocationWith

p: ownsBy

Figure 1-6 Semantic Web relationships

Fundamentally, the Semantic Web offers a new way to describe and share
information, a description that flexibly contains and reveals its semantics.

Sharing Data
The ability to exchange information greatly increases the information’s value.
Easy information exchanges allow the applications to use the best, most
up-to-date information rather than forming the information from scratch. Easy
exchange also leads to real reuse.

The Semantic Web enables semantic machine readability for exchanging infor-
mation between applications. Semantic machine readability goes beyond the
mere exchange of bits to exchange meaning. This is especially important for
large, distributed data exchanges typical of the WWW. Large data integration
belies significant challenges in data friction and data failures. These challenges
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represent the part of the integration iceberg that is below the surface, large and
hidden from the original integration task. Similar to an iceberg’s hidden mass,
these challenges often reveal themselves at stressful, challenging times.

Data friction results from the misalignment of the data due to different
technologies and data models. For instance, an Oracle database has a table that
refers to a Person, and a MySQL database has a corresponding table that refers
to an Individual. One information source is centered on work organizations;
another application is centered on members. Each data source maintains its
own perspective based on its needs. Neither is wrong, but integrating them
creates friction that’s usually ameliorated through extensive and complex
translation programming code. Semantic Web solutions reduce this friction
through semantics that relate similar concepts using Semantic Web statements.
This externalizes the friction, allowing the Semantic Web to directly address it.

Data failures result from missing data, conflicting data, and incorrect data.
Large integrations are full of data failures. The semantics and logic structure
that form the Semantic Web add missing data as well as the identification and
sometimes correction of data errors and data conflicts. The flexibility of the
Semantic Web allows these corrections to occur continuously as the data is
integrated or modified. Continuous correction allows the resolution of data
failures to occur gracefully throughout the data’s life. There is no need for one
big data cleanup activity usually demanded in other data approaches. The
Semantic Web produces more useful, shareable, and up-to-date data resources.
It pragmatically deals with the realities of large-scale data integration.

Naming represents a challenge to sharing information. A name identifies the
information and possibly its location. Many computer resources, such as data
in a database, have a name, a table name, a variable name, or the like. A useful
name distinguishes it from other related resources. The related resources
occupy a namespace where all names promise uniqueness. In order to leverage
the WWW namespace, a resource must establish uniqueness across the entire
WWW or else face limitations with related resources. Many namespaces
limit scope even within the WWW. For example, AOL buddies maintain a
namespace distinct from Yahoo buddies. Each buddy remains unique only to
its associated Instant Messaging service. Semantic Web artifacts are inherently
unique across the full span of the Internet. In addition, names are even more
useful if they provide information as to the resource’s location. A URL provides
both a unique name and a location (along with the possibility of additional
information). Elements within the Semantic Web are uniquely identified with
Uniform Resource Identifiers (URIs), which can also contain a resolvable
location, if so desired.

Machine readability, data friction and data failure management, and unique,
resolvable names foster a much smoother path to large-scale data integration
and sharing than other approaches.
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Making Data Dynamic and Flexible
Dynamic change is a tenet of the WWW. It is continuous and often unexpected.
Yet many applications are frozen and trapped by their initial requirements.
This is especially true with data and its representations. Many data representa-
tions are, therefore, perpetually designed to address yesterday’s requirements.
Freeing that data from traditional approaches is possible, but it comes at a high
price, increased complexity. A typical workaround to deal with change reuses
database strings for new and sometimes multiple purposes. One application
uses the database string field for status information for its customers in the
database. Another application uses the same string field for pending adjust-
ments to its customers. Sooner or later the two incompatible approaches collide
or surrender to the increasing complexity. The technique works for a short
time but eventually implodes. Properly designed Semantic Web applications
allow the inclusion of new data at any time. This allows the Semantic Web
application to gracefully align with current needs and avoids the traditional
workarounds found in brittle designs.

The Semantic Web enables information to figure things out through inference.
Imagine information that adds information to itself, by itself. This is a power
that few information technologies offer. Once information has been properly
described, a reasoner can infer new relationships. For example, say your
information contains the following two facts; John is a male, a male is a type of
person. The system could infer that John is a person. Thus, a query requesting
all persons would return John. Of course, this is a simple, straightforward
example, but it serves to illustrate one of the principal benefits of encoding
the semantics of data along with the raw values themselves. A reasoner can
also identify logical contradictions within your information. For instance, if
you made the claim that men and women are mutually exclusive groups, and
somewhere was the datum that John is a female, then the reasoner could use
the information from above to recognize contradictory data. Of course, this
is obvious and simple, but as the statements get more numerous, complex
contradictions are much more difficult to identify.

Inference makes each data item more valuable, because it can have an
effect on the creation of new information. This can be both positive and
negative. Each new piece of information has the capacity to add a great deal
of new information via inference, but that means that extra care must be taken
to validate new information. The inference process, just like all computer
systems, is vulnerable to the ‘‘garbage in, garbage out’’ phenomenon, but
inference amplifies this concern.

The Semantic Web provides meaningful links between related bits of infor-
mation, a new form of information navigation. This semantic metadata allows a
new type of information discovery and flexibility. You could start at one
point in the Semantic Web and explore it following a particular set of
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relationships. For example, you could start at information about a friend,
then follow the relationship to her friends to find out their interests. One friend
of your friend might have an interest new to you, so you could follow a link
to a definition of the interest. Maybe it sounds interesting, and you’ve found
a new hobby—and possibly a new friend, too! Naturally you can follow links
on web pages to do this already. But the Semantic Web offers the possibility
of having a program do it just as easily. Traditional searching and querying
serve as a nice complement to this sort of semantic navigation.

The Semantic Web is dynamic. An application can add information at any
point. Concepts can evolve at any time to become more useful or precise.
The WWW is a lively place, and the Semantic Web provides technologies
to leverage that change rather than avoid it. When amplified by the power
of inference, one new statement could ripple through the knowledgebase
to transform it into a more useful form. Similarly, that statement could be
removed, and the information would be back to its original state.

Finally, the Semantic Web is inclusive. The Semantic Web’s ability to express
information flexibly makes it ideal to incorporate other forms of data. The
Semantic Web can include semantic translation rules and statements allowing
the incorporation of other types of data from relational databases, XML web
services, and even simple comma-separated lists. Future chapters illustrate
each of these techniques. Therefore, these Semantic Web techniques can unify
and enrich other information sources and services. This is vital capability,
because much of the valuable information on the Internet, in the enterprise, or
on your laptop is not currently part of the Semantic Web.

The Semantic Web impacts require a new perspective in developing applica-
tions, a perspective based on a data-centric model leveraging large amounts of
diverse, distributed data that contains greater expressiveness, easier sharing,
and greater flexibility.

Avoiding the Roadblocks, Myths, and Hype

The new programming perspective must overcome the various misunder-
standings already present in the nascent Semantic Web. Roadblocks, myths,
and hype cloud your ability to move straight into programming, sometimes
stopping you altogether. If not affecting you, they may block the way for your
team or organization to take advantage of the Semantic Web. Sometimes the
largest hurdles are the ones we make up.

Semantic Web Roadblocks
Roadblocks can stop programming efforts dead in their tracks before they gain
momentum. We deal with three: web-centric development; taking comfort in
dirty, conflicting data; and dealing with the dynamic addition of new data.
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Technically the Semantic Web demands a new perspective on information.
Think how relational database technology creates a data perspective, a perspec-
tive based on the low-level details of tables, columns, rows, and keys. Now
you must establish a Semantic Web data perspective. This perspective has two
parts: data-centric programming and distributed information programming.

We previously covered web data–centric impact, but unfortunately it can
also become a roadblock to using the Semantic Web effectively.

In addition, information is never all in one place. Traditional approaches seek
to provide integration via the Extract, Transform, and Load (ETL) approach.
This involves a laborious process of acquiring the information, transforming
it, and finally integrating it into some single, unified store. This approach
has several problems: it does not scale; it incurs latency, leading to incorrect
information; it is error prone; it doesn’t handle change well; and it has a single
point of failure. The small scope of most traditional applications reduces the
seriousness of these challenges, but the applications remain constrained by
them. Integrating via Semantic Web programming means creating an interface
with the real source and not usually copying it. Real-time semantic transla-
tions allow your solution to scale while maintaining up-to-date information.
Accordingly, Semantic Web solutions must also deal with performance issues
and resource failures due to the distributed nature of the Semantic Web.

The second roadblock is the failure to recognize dirty, noisy data as an
advantage. The WWW is full of data, lots of it. Some of it is useful, some of it
is not, and some of it is just plain wrong. Traditional solutions that attempt to
incorporate such data try to fix and correct the data prior to using it. Subscribing
programs assume the data is clean and correct. Again, a small application may
actually correct all its data, but that is simply not a possibility for the global
information space of the WWW. Instead, large data integration produces dirty,
noisy information with apparent conflicts, duplication, and errors. In order to
fix it, your program would first have to know the truth. Unfortunately, often in
the WWW there is no ground truth, no overriding authority. Rather than mount
the quixotic struggle to right all the wrongs, a Semantic Web application can
operate effectively within this global mess. A Semantic Web application creates
concepts that it considers useful for its needs. These concepts can incorporate
dirty information or not. For example, a Semantic Web application could collect
vendor feedback scores from several sites and create a reputation concept for
vendors. The concept can choose to include information or not, depending on
your concerns and values for a given situation. Conflicting information could
be incorporated into the concept, possibly lowering the confidence in the
reputation. Likewise, supporting information could increase the confidence.
The flexibility of the semantics enables applications to define reputation in
different ways and manage conflicting information. This flexibility allows an
application to incorporate all or some of the relevant information and map it to
its specific concept. Traditional applications fail to offer such flexibility or take
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advantage of this flexibility. Similarly, a Semantic Web application can handle
missing data or incorrect data, as you shall see when we cover reasoning and
related topics.

The dynamic flexibility of the Semantic Web can also form a roadblock. A
Semantic Web application is not nailed down like traditional applications. The
dynamic nature requires your application to manage change. Your Semantic
Web application must remain open to possibilities, at any time. Remaining
open is not a perspective easily gained. A Semantic Web application is
designed to handle new, incoming information. As mentioned previously,
this information could be conflicting or contain errors. A Semantic Web
application maintains a nimble, agile view to data. It is not as fixed and
controlled as traditional database applications. Many upcoming examples will
help to provide a more concrete view of this important perspective.

So beware of these roadblocks: programming instructions over the creation
of statements for the Semantic Web, trying to gather all the data into one place,
and fearing the dynamics that the Semantic Web allows. Heeding these road-
blocks causes Semantic Web solutions that mimic the constraints of traditional
systems and thereby fail to gain the full advantages of the Semantic Web.

Semantic Web Myths
Several myths can also impede your efforts. They were founded in the devel-
opment of traditional systems: developing one data model, developing one
data view, and the inability to accept change à la the human acceptance myth.

Building the one of anything has been the scourge of technical progress. Have
you been involved in building the one corporate database, the one enterprise
framework, the one perfect web service? One of the biggest myths of the
Semantic Web and one sure to undermine its success is the pursuit of the
one big information model. We have seen several efforts stumble over this
unachievable challenge with lengthy debates (is a thing an object?). Do not fall
into this trap. It is the black hole of the Semantic Web, where effort goes in
and nothing ever comes out. Even in some other universe where it works, it
ultimately won’t scale anyway. The Semantic Web is designed to support a
multitude of distributed information sources with a multitude of perspectives.
Your solutions need to maintain this perspective; you should too. The Semantic
Web mirrors the WWW itself, so a Semantic Web application seeks to leverage
the Web’s vast distributed information. This small paragraph will not stop the
insanity of others from pursuing the one perfect model, but hopefully it will
stop you. If you hear someone discussing the one big data model, run!

The next myth, which aligns perfectly with the one model, is the one view.
The Semantic Web allows a solution to provide deep customized views into
information. This freedom is at the very heart of the Semantic Web. Rather than
be a straightjacket of control, an effective Semantic Web application allows
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any view for information analysis. Accordingly, this multiple-information
perspective aligns perfectly with agile methods. Even in a limited-scope
information source, it is unlikely that your initial design will work perfectly.
The same ability to absorb other information sources easily works to absorb
your future changes. This also stops the initial paralyzing steps of nailing
the perfect, albeit limited, information model. This perspective allows you to
get started quickly and then adapt and evolve as the development unfolds.
Accordingly, this also encourages a decoupled, modular design. Multiple
views also help manage the dirty-data phenomena. What is one person’s data
dirt may provide someone else with a useful insight.

In addition, both the one information model and the one view suffer from
a further myth, Not Invented Here (NIH). The Semantic Web encourages
just the opposite. A Semantic Web solution should first look for existing
semantic sources and then add customizations. Only the last resort creates an
information source from scratch.

Finally, the acceptance myth: Change is difficult, and we have never expe-
rienced a Semantic Web implementation that was instantly accepted. New
technologies, especially those dealing with sensitive data, scare people, as they
should. Change also scares people. You need to address this up front and
prepare for resistance. As with all new technologies and approaches, there is
risk; however, risk works both ways: positive and negative. Positive risk may
provide your application with a real advantage compared with traditional
approaches. Negative risk may saddle your application with extra training
and support costs. Simply play up the positives by taking advantage of the
Semantic Web and work to mitigate the disadvantages. Face this directly and
honestly to maximize the benefits while realizing that nothing is a silver bullet.

Semantic Web Hype
Hype dooms a technology, for it overpromises (lies), and in doing so, it
disappoints, just as we need to invest and learn it. As with any major
technology, the Semantic Web is full of hype, some positive and some negative.
Much of the hype comes from its artificial intelligence (AI) roots. In the 1980s,
AI had everyone excited about the friendly computer agent that would achieve
a level of sentience. Videos demonstrated computers of the future that offered
human insights and capabilities. This, of course, didn’t happen and produced
a cynical view of powerful AI research. AI had stunning successes, but much
of this was buried under the disappointment caused by the hype. Adding
semantics through relationships and logic does not achieve AI. The Semantic
Web did, however, incorporate excellent AI research of the past decades. The
Semantic Web offers a useful improvement in leveraging information. It is an
evolutionary step in making our information work harder for us. In ways, the
Semantic Web helps fulfill some of the AI goals by providing a rich, expressive
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data form that is machine readable, but the Semantic Web will not achieve
sentience anytime soon.

Hype can also make a complex technology seem too simple. Tough, chal-
lenging problems demand complex technical solutions. Would you want your
MRI performed by a hacked Visual Basic script? Complexity is valuable as long
as it remains focused on the problem. Unnecessary complexity in the solution
makes the problem’s complexity that much more difficult. Modern computer
languages have removed much of the complexity of the underlying computer
resources so that applications can step up to more complex solutions. Simi-
larly, the Semantic Web has removed much of the complexity of forming and
exchanging complex information. It has not removed the complexity of the
information itself but rather enabled its capture. Rocket science is still rocket
science, but now information about it can be more easily expressed, shared,
and reasoned over. The Semantic Web reduces unnecessary complexity to
focus on the necessary complexity, that of managing all the information and
knowledge we produce.

Finally, hype can overpromise the inherent challenges in using a new
technology. Our efforts in the real world took us into areas of the Semantic
Web that have never been applied to real solutions. We braved this world so
that you don’t have to. That doesn’t mean that it is all finished. Much remains
to be done, and it is our hope that you will contribute to its advancement. The
Semantic Web is improving with large investments across the globe, but it is
not without its growing pains. That is simply the truth in working with any
new, emerging, and evolving technology. Do not expect a perfect world with
respect to tools, frameworks, and the semantic language itself. You may hit
some bumps, but hang in there; it will be worth it.

Understanding Semantic Web Origins

The origin of the Semantic Web comes from the quest to externalize knowledge.
Despite a long history of advancements, the quest remains for us today. We
have tried in so many ways and yet remain frustrated with our efforts. Read
Gödel, Escher, Bach: An Eternal Golden Braid by Douglas R. Hofstadter (Basic
Books, 1999) if you want some reassurance that the human brain processes
information in ways we simply don’t understand. It is no surprise we have
trouble translating information to a machine. The computer demands exactness
and precision, two areas that humans often fudge. Herein lies the dilemma:
Computers can do useful things only if we explain those things in excruciating,
precise, and consistent detail. This struggle has produced many types of
data, information, and even knowledge formats. Commonly we can refer to
them as forms of knowledge representation. They include network databases,
relational databases, tree structures, objects, messages, and the like. Along
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this path, we collectively have learned what works and what doesn’t work
for different problems. Often it is not an absolute answer but a contextual
one. The Semantic Web is no different. It does not so much replace these
approaches as give you a new approach. It embraces a new form of knowledge
representation, a knowledge representation that leverages and improves on
some previous methods.

The Semantic Web gained wide visibility following an article in
Scientific American by Tim Berners-Lee, James Hendler, and Ora Lassila
(http://www.sciam.com/article.cfm?id=the-semantic-web). The article
outlined a pragmatic vision to improve the value of the information contained
in the World Wide Web. It foretold many of the characteristics noted
previously: machine readability, easy information integration, information
inference, unique naming, and rich representations, among others. This led
the authors to make a bold statement: ‘‘The Semantic Web can assist the
evolution of human knowledge as a whole.’’ Bold but possible, given the
current extent of information on the World Wide Web. We know that many
answers to our questions are out there, but due to the current human-only
readable form of the data, they remain only a tantalizing possibility. How
many web pages can you digest to form an answer? How many do you need
to read to gather all the little pieces that together form the answer you seek?

The Semantic Web did not emerge out of just one seminal paper, but many.
The Semantic Web is based on sound, proven information techniques built on
centuries of scholarly contributions. Two major disciplines contributed to the
Semantic Web: graph theory and description logic.

Graph theory is at the heart of the Semantic Web. A graph represents
nodes and relationships. Stepping back from the WWW, you can recognize
a graph-like structure or web through its many hyperlinks. Graph origins
predate, by quite a bit, the World Wide Web and even computer technology
more generally. Graph theory started with a seminal paper from 1736: ‘‘The
Seven Bridges of Königsberg,’’ by Leonhard Euler, the famous mathematician.
This paper provided a solution to a basic question. Is there a route that allows
the traveler to cross each of the seven bridges of Königsberg once and return
to the starting point? The answer is no, and he solved it using a new branch of
math, graph theory. With graph theory, he could prove that it is not possible.
His graphs imply the answer. The only other approach is brute force—try
each path. This is not only a tedious, exhausting method, but it leaves the
questioner with troubling doubts, for it is possible that an untried path does
exist. The search for a traveling route forms the foundation of establishing
routes to useful information on the Web. Semantic Web solutions tap directly
into the mathematical advantages that graph theory offers. This leads to data
processing efficiencies.

Description logic also goes back, but not quite as far. Several papers out-
line the basics in the 1980s. Description logic holds the rules to construct
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valid, useful knowledge representations, knowledge representations that are
decidable, representations that can actually produce an answer. Undecidable
representations result in representations that wrap around themselves, never
reaching any conclusions. It derives from first-order logic. It defines expres-
sions that are, well, logical, a formalism for representing knowledge (see An
Introduction to Description Logics by Daniele Nardi and Ronald J. Brachman
(Cambridge University Press, 2002). Description logic resulted from years of
AI research aimed at capturing rich knowledge in an explicit, externalized
form. Description logic makes information explicit rather than tacit. Tacit
information is what gets diffused in traditional applications via if/else, special
values, and shortcuts, because only humans really understand it (and we have
trouble articulating it). The externalized form reveals the information for ver-
ification, integration, reasoning, and interrogation. Description logic includes
many types of relationships beyond inheritance to provide the flexibility to
form rich, complex concepts that maintain defendable logic. These external
forms researched and proved in description logic translate into Semantic Web
constructs. Thus, your Semantic Web programs can now take full advantage
of description logic. Your Semantic Web application can tap directly into this
powerful expression of information.

Why mention this history? Good ideas are good ideas, ideas that take many
forms over the ages. The Semantic Web is the latest manifestation of graph
theory and description logic. Your Semantic Web applications form instances
of these advancements. Your programming efforts in the Semantic Web spring
from this solid theoretical ground. You can defend your pursuit and your
solutions. How many others could refer to a work from 1736 and exercise useful
nuggets from AI? Semantic Web solutions incorporate advanced information
theory. The pursuit of paths through bridges and information itself led to the
new technologies that underlie the Semantic Web.

The Semantic Web is built not only on mathematical theories but also on fun-
damental Internet technologies and philosophies. The success of the WWW has
taught us not to go it alone, at least if a technology wants to survive. Build suc-
cess on other proven successes. The Semantic Web is no different. The Semantic
Web supports the inclusive and evolutionary nature of the WWW. The Seman-
tic Web layer cake illustration in Figure 1-7 demonstrates some key dependen-
cies such as URLs and XML that form the foundation of the Semantic Web.

Figure 1-7 also shows that future Semantic Web capabilities will deal with
trust and providence. Semantic Web applications also utilize Internet services
such as DNS and even traditional relational database technologies found in
implementations such as Oracle and MySQL. More fundamental than that, the
Semantic Web depends on existing information sources, the more semantic the
better. Successful Semantic Web solutions reach out to many diverse sources
to fulfill their larger information need. This fits with the recently formed
Web 2.0 philosophy, a philosophy based on extensive integration and user
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contributions. Examples include Google maps, MySpace.com, Flickr.com, and
Facebook.com. Semantic Web solutions make the most of available technolo-
gies. In addition, like any Web 2.0 technology, the Semantic Web benefits with
each new additional application and information source. It benefits from the
virtuous cycle of wide-scale contributions that established Web 2.0.
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Figure 1-7 Semantic Web layer cake

The origin of the Semantic Web begins with our pursuit of externalizing
what we know. It benefited from key advancements in graph theory and
description logic to produce a viable knowledge representation that values
existing technologies, applications, and data sources.

Exploring Semantic Web Examples

Now we’ll demonstrate some actual Semantic Web information sources and
applications. The following examples highlight some of the advantages of
the Semantic Web applications. The examples include a variety in order to
highlight key semantic features.

Semantic Wikis (semantic-mediawiki.org)
Wikis collaboratively build useful websites; however, the easy creation of
content, web pages, and links belies the difficulty of fully leveraging the
content. Wikis depend heavily on human-entered links. Content becomes
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stranded or just plain lost if the link doesn’t exist on an obvious page. The links
themselves are almost nonsensical due to their automatic, dynamic creation.
Semantic wikis allow the collaborators to enter semantics. This allows a user
to query the wiki or semantically navigate to find information rather than just
depending on the native links. In addition, applications can query the content
and reuse it. This is vital as the wiki grows beyond a few pages. Since the
wiki participates in the Semantic Web, inference and other tools can add to its
value. The contributors enter semantic properties, and the associated values
are bound to the entered content. The Semantic wiki can export the semantics
to a file or an external application. This book was developed using a semantic
wiki for collaboration and discussion. Figure 1-8 illustrates a basic query to
find content.

Figure 1-8 Semantic wiki

There are several rapidly evolving semantic wikis. They hold the promise
to manage and leverage large amounts of user created content.

Twine (www.twine.com)
Twine is all about relationships, information relationships. From these relation-
ships, other relationships, such as social relationships, emerge. The result is a
knowledge network. It employs the Semantic Web to construct and manage many
of these relationships. You can easily add information and meta-information
from all types of sources, such as RSS feeds, emails, blogs, and direct file
downloads. Figure 1-9 illustrates a twine about the ontologies.
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Figure 1-9 Twine relationships

Figure 1-10 illustrates adding information to an existing twine, in this case
the BBN Semantic Web twine.

Figure 1-10 Contributing to a twine
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The FOAF Project (www.foaf-project.org)
FOAF is not so much an application as an ontology used by many applications,
including major ones discussed later in this book. The Friend of a Friend
(FOAF) project was one of the first to recognize the simple power of social
networks. The FOAF project offers tools to relate people through a model
that contains typical social attributes such as a name, email address, interests,
and the like. Tools allow you to create a model describing yourself (see
www.ldodds.com/foaf/foaf-a-matic). The following code below is a FOAF
file in TURTLE format (more on that later) describing some fictitious folks we
explore in the next chapter. It contains basic information and their relationships
to each other. Believe it or not, this basic start is a solid foundation for forming
rich social networks. Future sections expand on this concept, including the
next chapter that builds a Hello World semantic application.

<http://org.semwebprogramming/chapter2/people>

rdf:type foaf:PersonalProfileDocument ;

admin:errorReportsTo

<mailto:leigh@ldodds.com> ;

admin:generatorAgent

<http://www.ldodds.com/foaf/foaf-a-matic> ;

foaf:maker <http://org.semwebprogramming/chapter2/people#me> ;

foaf:primaryTopic <http://org.semwebprogramming/chapter2/people#me> .

<http://org.semwebprogramming/chapter2/people#me>

rdf:type foaf:Person ;

foaf:depiction <http://semwebprogramming.org/semweb.jpg> ;

foaf:family name "Web" ;

foaf:givenname "Semantic" ;

foaf:homepage <http://semwebprogramming.org> ;

foaf:knows

<http://org.semwebprogramming/chapter2/people#Reasoner> ,

<http://org.semwebprogramming/chapter2/people#Statement> ,

<http://org.semwebprogramming/chapter2/people#Ontology> ;

foaf:mbox <mailto:dataweb@gmail.com> ;

foaf:name "Semantic Web" ;

foaf:nick "Webby" ;

foaf:phone <tel:410-679-8999> ;

foaf:schoolHomepage <http://www.web.edu> ;

foaf:title "Dr" ;

foaf:workInfoHomepage

<http://semwebprogramming.com/dataweb.html> ;
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foaf:workplaceHomepage

<http://semwebprogramming.com> .

<http://org.semwebprogramming/chapter2/people#Reasoner>

rdf:type foaf:Person ;

rdfs:seeAlso <http://reasoner.com> ;

foaf:mbox <mailto:reason@firefox.com> ;

foaf:name "Ican Reason" .

<http://org.semwebprogramming/chapter2/people#Statement>

rdf:type foaf:Person ;

rdfs:seeAlso <http://statement.com> ;

foaf:mbox <mailto:mstatement@adobe.com> ;

foaf:name "Makea Statement" .

<http://org.semwebprogramming/chapter2/people#Ontology>

rdf:type foaf:Person ;

rdfs:seeAlso <http://ont.com> ;

foaf:mbox <mailto:ont@gmail.com> ;

foaf:name "I. M. Ontology" .

The FOAF project encourages everyone to create and publish his or her FOAF
model. Model readers can then recognize and incorporate this information into
a contact list or a search response. Many existing web pages contain FOAF
information.

RDFa and Microformats
Similar to FOAF, microformats and RDFa are also formats employed by many
applications. These enter semantics directly into a typical XHTML web page.
This demonstrates description data sharing using semantic formats. Tools
integrated into the browser recognize these semantics and offer capabilities
to use the semantics information. Although a small step, it is a step in the
right direction. The lack of semantics on a basic web page makes search much
more difficult. Microformats are a big improvement over screen scraping,
which is a very brittle approach to obtaining information. A microformat
could describe a contact as including a FOAF model, an event, resumes,
job offerings, and much more. There are dozens of standard microformats,
each for different types of information. See www.microformats.org for an
extensive list. The Firefox extension, Semantic Radar, inspects web pages
for semantic content and indicates this content via icons on the Firefox
status bar. The web page illustration, Figure 1-11, contains several icons in
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the lower right that provide links to the underlying RDF files, including a
FOAF description. The second illustration, Figure 1-12, is the Ontology Online
website.

Figure 1-11 Semantic Radar microformat plug-in

Semantic Radar provides a path to the semantic information. A partnering
application could take this information and populate your calendar, your
contact list, or your social networks. There is no easy way to accomplish this
simple knowledge transfer without an agreed-upon semantics.
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Figure 1-12 Semantic Radar example

Semantic Query Endpoint (dbpedia.org/sparql)
A semantic query endpoint offers the ultimate information exposure: a URL
that answers your questions formed from a standard semantic query language,
SPARQL. We focus on semantic query languages with SPARQL (SPARQL
Protocol and RDF Query Language) in Chapter 7, ‘‘Adding Rules’’ but just
note that the full power of that query can be directly exposed via the Web.
This forms a Semantic Web offering. Without all the background, you can still
give it try (dbpedia.org/sparql). Figure 1-13 illustrates a query response.

Semantic Search (www.trueknowledge.com)
Search is made much more powerful with the addition of semantics.
Although still in beta, True Knowledge moves into this space. Others include
www.opencalais.com and www.powerset.com. Figure 1-14 demonstrates the
power of semantic search.

Some semantic wikis also offer up their content via a SPARQL endpoint.



Chapter 1 ■ Preparing to Program a Semantic Web of Data 33

Figure 1-13 dppedia–SPARQL endpoint

Figure 1-14 True Knowledge response
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Okay, that gives you a taste of the possibilities ahead. On to forming your
first Semantic Web application, the Hello Semantic World Tour, in the next
chapter.

Summary and Onward

Your Semantic Web conceptual foundation is now established. The Semantic
Web offers a new, more powerful way to create and share information. Its logi-
cal and standardized definition enables advanced information processing such
as inference and validation. The Semantic Web requires a new programming
perspective, one that turns distributed, confusing, and massive information
into real solutions.

The Semantic Web has its fair share of roadblocks, myths, and hype. Seeing
past these helps ensure a positive programming experience with a success-
ful outcome. The Semantic Web is solidly grounded on graph theory and
description logic. It provides a knowledge representation that is defendable
and worthy of your investment.

Semantic Web programming consists of core components: statements, the
URI, an ontology, and instance data managed and formed through the various
construction tools, interrogation tools, reasoners, and rules.

Now, get programming—say hello to the Semantic Web Tour.

Notes

1. W3C Semantic Web Activity home page, http://www.w3.org/
2001/sw/, which is ground zero for the Semantic Web URLs

2. ‘‘Expressiveness and Tractability in Knowledge Representation
and Reasoning,’’ Hector J. Levesque and Ronald J. Brachman

3. ‘‘Ontology Driven Architectures and Potential Uses of the
Semantic Web in Systems and Software Engineering,’’ eds.
Phil Tetlow and Jeff Z. Pan (W3C Working Group, 2003)

4. An Introduction to Description Logics, Daniele Nardi and
Ronald J. Brachman (Cambridge University Press, 2002)

5. ‘‘Ontology-Driven Software Development in the Context of Semantic
Web: An Example Scenario with Protégé/OWL,’’ Holger Knublach

6. ‘‘An Introduction to Model Driven Architecture,’’ Alan Brown (IBM,
2004)

7. ‘‘A Semantic Web Primer for Object-Oriented Software Developers’’
(W3C Working Group, 2006)



C H A P T E R

2
Hello Semantic

Web World
‘‘Hello? Operator! Give me the number for 911!’’

—Homer Simpson

Now we step directly into Semantic Web programming, saying hello to a web
of data. We start with a simple hello to the Semantic Web itself and then
expand to its friends via its web of data. Thus, rather than a one-shot ‘‘hello
world,’’ you’ll get a hands-on tour of Semantic Web programming—a Hello
Semantic Web World tour.

This tour forms a programming introduction to the rest of the book. It
gets you started in code, with a code-based foundation. This gives you
the immediate ability to experiment with actual programming examples. Of
course, you might not understand everything at this point, nor should you
expect to. The examples in this chapter provide an initial glimpse into what is
ahead in the rest of the book. Hopefully, the Hello Semantic Web World tour
will be a fun, insightful, and pragmatic start into Semantic Web programming.

We strongly recommend not just reading the code but running it too.
You can customize it as you like or just skip to detailed description in the
chapters ahead. This not only gets your hands into code but validates that
your environment is set up correctly so that you can follow along with the rest
of the book.

The objectives of this chapter are:

Set up a Semantic Web programming environment.

Illustrate a basic Semantic Web ‘‘hello world’’ program.

Gain initial Semantic Web programming experience.

Illustrate examples of the key operations involved in Semantic Web pro-
gramming.

35
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Setting Up Your Semantic Web Development
Environment

First we need to set up your development environment. This environment
forms the foundation for most of the examples in the book. Here we keep it
simple and straightforward. Please refer to the appendix if you run into any
problems or have questions not answered in this direct treatment. Here is an
overview of the environment:

Compiling and execution tools: Java 1.6 Software Development Kit
(SDK)

Code-editing tools: Eclipse Integrated Development Environment 3.4
(IDE)

Ontology editing tool: Protégé Ontology Editor 4.0 Alpha

Semantic Web Programming Framework: Jena Semantic Web Frame-
work 2.5.6

Ontology Reasoner: Pellet 1.5.2

Within the Semantic Web community, most of the tools that have been
developed to date use the Java programming language, and this book does
so as well. Therefore, our examples require a Java Software Development Kit
(Java SDK). We assume that readers are familiar with Java. The SDK provides
you with compiling tools and a runtime virtual machine to run Java programs.
We recommend the latest release of Java, which at the time of this writing is
Java 1.6. (Sun also refers to v1.6 as v6.0.) The examples also work with Java
1.5. If you don’t have the Java SDK already, go to the Java download site
(http://java.sun.com/javase/downloads/index.jsp) and install the latest
update to JDK 6.

In addition to the SDK, you will need an editor. You can use any
Java editor you like, but all of the examples in this book make use of
the Eclipse platform’s Integrated Development Environment (IDE). It is
an excellent and widely used software package, and it is freely avail-
able (http://www.eclipse.org/downloads/moreinfo/java.php). While our
examples are oriented toward Eclipse, none of them depend on Eclipse, so feel
free to use your preferred editor.

You will need to create, edit, and combine ontologies using an ontol-
ogy editor. These files can also be hand-coded in a standard text editor,
but an ontology editor offers many conveniences and features specific to
ontologies. We use version 4 of the freely available Protégé ontology editor
(http://protege.stanford.edu/download/protege4/installanywhere/).

In order to manipulate an ontology programmatically, you need a Semantic
Web programming framework. This contains the libraries to allow your
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programs to interact with Semantic Web data, such as ontologies and instance
data, and to allow you to take advantage of reasoners and query languages.
For this purpose, we use the Jena Semantic Web framework version 2.5.6
(http://downloads.sourceforge.net/jena/Jena-2.5.6.zip). To help you as
you follow the examples in this book, you might want to explore the Jena
website; it contains documentation, tutorials, and a support area. The standard
Jena download also includes extensive documentation. The documentation
resides in the docdirectory underneath the directory where you unzipped Jena.

The Jena framework download includes several reasoners. You don’t need
to worry about downloading and installing these reasoners separately. In
addition to the reasoners provided in Jena, we also use the Pellet 1.5.2 reasoner
(http://pellet.owldl.com).

We chose these tools in part due to their adoption, maturity, and effectiveness
but also because they are freely available, open-source software. Many other
open-source and commercial tools are also excellent, but we chose these tools
to focus on working code examples rather than a tool survey.

That completes all the components you require for most of our examples
throughout the book. Figure 2-1 illustrates and summarizes how the pieces fit
together. Appendix F supplies detailed information on these components.

Ontology Editor

Protege.stanford.edu

Ontology

Classes Instances

I.D.E

eclipse.org

Console

Projects Code

Query Engine

Storage

Ontology Management

Reasoner

Rule Engine

clarkparsia.com/pellet

Reasoner

D.I.G.

Jar

jena.sourceforge.net
Semantic Web Framework

Figure 2-1 Semantic Web Software Development Environment

Now that all of the software has been installed, you have two development
tools: Eclipse for Java and Protégé for ontologies. You also have two sets of
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libraries: Jena for Semantic Web interactions and Pellet as an independent
reasoner. Now we’ll show you how to exercise the environment with the
Semantic Web Hello World tour.

Programming the Hello Semantic Web
World Application

The Semantic Web offers quite a bit, and a simple hello is only the start.
We expand the example throughout this chapter to form a Semantic Web
Hello World tour that illustrates key Semantic Web programming concepts
and capabilities. The purpose of these examples is to show you what can be
done, expressed in a simple, direct way. Future chapters dive into the details.
This gets your coding started. You need not understand all the details at
this point. You can follow along knowing that more explanation will come
in the chapters ahead. As we explore the specifics in future chapters, this
tour provides you with a programming foundation that will improve your
retention and understanding of the later, more detailed chapters.

Our hello tour takes a very literal approach to saying hello to the Semantic
Web. In this example, we pretend that the Semantic Web is a person to
whom we want to say hello. Suppose there are two sets of data describing
the ‘‘friends’’ of the Semantic Web. Consider each data set as coming from
a different Personal Information Manager (PIM). PIMs contain information
about the owning person, in this case the Semantic Web, and the Semantic
Web’s associates. It is not unusual to have more than one data source and
format due to the many websites and applications that track PIM information.
Examples of PIMs include Facebook.com, Myspace.com, a gmail.com contact
list, and Microsoft Outlook. Each one has information about the owner and
the owner’s associates in its own format. Our Semantic Web Hello World tour
wants to say hello to all the Semantic Web’s friends contained in both data sets.
This example not only illustrates the basic programming needs but also exposes
you to the methods for extracting, integrating, and evolving ontologies.

First we establish the project. Open up your IDE and create a new Java
project. Our example uses the project name HelloSemanticWeb, and all project
files are available at our book website. Make sure to set the Java Runtime
Environment (JRE) correctly to version 1.6. Figure 2-2 illustrates, in Eclipse,
making a new Java project.

Next we create a new HelloSemanticWeb class. In order to keep the example
simple, this class will hold all the necessary program code. Make sure to
check the ‘‘public static void main(String[] args)’’ box. This enables this class
to start the program with the call to the main function and thus output in
the traditional Hello World text window. Figure 2-3 illustrates, in Eclipse, the
creation of the new class.
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Figure 2-2 New project

Finally, we need to add the Jena and Pellet libraries to our new project. Select
the Project Properties menu item from the top Eclipse menu. This opens a new
Properties window. Select Java Build Path within the Properties window. Then
select the Libraries subwindow. Select Add External JARs. This allows you
to enter all the necessary JAR or library files from the Jena Semantic Web
framework. Since we are exercising quite a bit in the Hello tour, just add
them all. Go to the directory where you unzipped Jena, and select all the JAR
files in the lib directory. Repeat for the Pellet lib directory. Note for Pellet
that you do not need to include the Jena libraries that are included in the
Pellet download. You need only pellet.jar. Your included JARs should look
similar to those in Figure 2-4.
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Figure 2-3 New class

This completes the setup of your Semantic Web project environment. You
are now ready to add code and make your application say hello.

As stated earlier, we designed a Semantic Web Hello World program that
provides a tour of Semantic Web programming. We use Hello World to guide
us though the many possibilities. Our Hello Semantic Web World tour has six
major stops:

1. Say hello to the Semantic Web.

2. Say hello to some friends of the Semantic Web.

3. Expand the friend list to include friends from a different source.

4. Say hello to all the Semantic Web’s friends.

5. Say hello to a restricted list of only friends with email addresses.

6. Say hello to a restricted list of only friends with gmail.com addresses.
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Figure 2-4 External libraries (JAR files)

Along the way, the tour will have some false stops to help illustrate why the
program requires additional steps.

We will explore and query the instance data (the friends), align the instance
data to ontologies, integrate multiple data sets and ontologies, reason across
the data, and establish restrictions and rules, all demonstrated in code. Each
tour stop implements four major steps: acquiring a structured storage space
or model, populating the model with Semantic Web data, possibly processing
the data including querying the data, and finally outputting the appropriate
data—the hellos. Much of this is similar to building a relational database
application.

We plan to say hello to the Semantic Web, and for that we need to
create instance data in a format compatible with the Semantic Web. This
FOAF-a-Matic (http://www.ldodds.com/foaf/foaf-a-matic) site provides a
fill-in form that generates a Semantic Web instance data of people and their
associates. You can save the data in a file. It only scratches the surface of the
full FOAF ontology, but it is sufficient for our purposes and many others.

The FOAF ontology contains social information that you can share and
search. The range of data it supports is consistent with what might be
provided by a PIM. It contains information such as an owner’s name (in this
case, Semantic Web), email address, work, and people known by the owner
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(in this case, friends of the Semantic Web). We populated a FOAF graph for
the fictitious owner, Semantic Web. This provides us with the information to
say hello to the Semantic Web. Many folks already use FOAF to allow easy
exchange of contact information. Throughout the book, we extend and enrich
this social ontology in lots of interesting ways. This step provides us with
some useful Semantic Web data.

Before we use the FOAF data from the FOAF-a-Matic in our application,
we examine it in Turtle format. More information about different formats for
Semantic Web data can be found in Chapter 3, ‘‘Modeling Information.’’ It is
slightly edited to focus on the key portions. The complete code is available at
our website.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix admin: <http://webns.net/mvcb/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix swp2: <http://semwebprogramming.org/2009/ont/chp2#>.

< swp2:me>

rdf:type foaf:Person ;

foaf:depiction <http://semwebprogramming.org/semweb.jpg> ;

foaf:family name "Web" ;

foaf:givenname "Semantic" ;

foaf:homepage <http://semwebprogramming.org> ;

foaf:knows < swp2:Reasoner> , < swp2:Statement> , < swp2:

Ontology> ;

foaf:name "Semantic Web" ;

foaf:nick "Webby" ;

foaf:phone <tel:410-679-8999> ;

foaf:schoolHomepage <http://www.web.edu> ;

foaf:title "Dr" ;

foaf:workInfoHomepage

<http://semwebprogramming.com/dataweb.html> ;

foaf:workplaceHomepage

<http://semwebprogramming.com> .

< swp2:Reasoner>

rdf:type foaf:Person ;

rdfs:seeAlso <http://reasoner.com> ;

foaf:mbox <mailto:reason@hotmail.com> ;

foaf:name "Ican Reason" .

< swp2:Statement>

rdf:type foaf:Person ;

rdfs:seeAlso <http://statement.com> ;
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foaf:mbox <mailto:mstatement@gmail.com> ;

foaf:name "Makea Statement" .

< swp2:Ontology>

rdf:type foaf:Person ;

rdfs:seeAlso <http://ont.com> ;

foaf:mbox <mailto:ont@gmail.com> ;

foaf:name "I. M. Ontology" .

This collection of statements does not constitute an ontology, although it
refers to the various ontologies or vocabularies in the prefix portion at the top.
An ontology has information regarding classes and their relationships. This
data only refers to potential ontologies elsewhere.

These Semantic Web statements produced by the FOAF-a-Matic describe
the person, Semantic Web, and friends. The statements form relationships.
For example, the first grouping under #me declares information regarding the
owner, the Semantic Web. The grouping of statements provides information
about the owner’s name, telephone number, and the like. The code also contains
three smaller groupings describing the people known by Mr. Semantic Web.
For each person, ‘‘Ican Reason,’’ ‘‘Makea Statement,’’ and ‘‘I. M. Ontology,’’
the document contains a name and email address. We will use just these
statements to say our initial hellos. Note that the actual instance URI is not
the same as the name. Ican Reason is merely a name associated with the URI
swp2:Reasoner. The resource swp2:Reasoner could have many names or no
name at all. Figure 2-5 outlines the FOAF Instance Graph.

p: Mep: Statement p: Reasoner

reason@firefox.com
p: Ontology

rdf: type

foaf: knows

foaf:
mbox

rdf: type

rdf: type

rdf: type

foaf: knows

mst@gmail.com

foaf: mbox

mst@gmail.com

foaf: mbox

Figure 2-5 FOAF Instance Graph

We are now going to programmatically create a place to load this data—a
model—and then load the above Semantic Web data into the model. This
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allows us to query for information such as a list of friends. Once we have
the query response, we can issue our hellos. Here is the initial code to load the
graph. As with all our examples, our website provides the complete source.

public class HelloSemanticWeb {

static String defaultNameSpace = "

http://semwebprogramming.org/2009/ont/chp2:#";

private Model friends = null;

public static void main(String[] args) throws IOException {

HelloSemanticWeb hello = new HelloSemanticWeb();

//Load my FOAF friends

System.out.println("Load my FOAF Friends");

hello.populateFOAFFriends();

//...

}

// ...

private void populateFOAFFriends(){

friends = ModelFactory.createOntologyModel();

InputStream inFoafInstance =

FileManager.get().open("Ontologies/FOAFFriends.rdf");

friends.read(inFoafInstance,defaultNameSpace);

inFoafInstace.close();

}

The start of the file contains all the necessary imports, but we left these
out of the code sample for brevity. The Eclipse IDE suggests the neces-
sary imports automatically. The first line in the sample declares the class,
HelloSemanticWeb. This is followed by two variables that contain the default
namespace in setting up a URI and a model to hold the Semantic Web friends.
We selected a resolvable URI based on the book’s website. Once initialized,
the friends model holds the web of data shown in Figure 2-5. We create an
instance of the class, HelloSemanticWeb, and then call one of its methods,
populateFOAFFriends(), to populate the friends model. The first step
creates the model, ModelFactory.createOntologyModel(). Next, we read into
the model the contents of our file from the FOAF-a-Matic created previously.

Now the graph outlined earlier in Figure 2-5 is in the friends model and
ready for processing, including questioning to generate our initial hellos.

In the next section of code, we say hello to the Semantic Web itself. The data
does not contain any semantics yet, so we need to match actual characters. In
the first case, we match on the Semantic Web itself, referred to as me in our
automatically generated file.
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// Say Hello to myself

public static void main(String[] args) {

// ...

System.out.println("\nSay Hello to Myself");

hello.mySelf(hello.friends);

// ...

}

// ...

private void mySelf(Model model){

//Hello to Me - focused search

runQuery

(" select DISTINCT ?name where{ swp2:me foaf:name ?name }", model);

}

.

.

.

private void runQuery(String queryRequest, Model model){

StringBuffer queryStr = new StringBuffer();

// Establish Prefixs

queryStr.append("PREFIX swp2" + ": <" + defaultNameSpace + "> ");

queryStr.append("PREFIX foaf" + ": <" +

"http://xmlns.com/foaf/0.1/" + "> ");

//Now add query

queryStr.append(queryRequest);

Query query = QueryFactory.create(queryStr.toString());

QueryExecution qexec = QueryExecutionFactory.create(query, model);

//Run Select

try {

ResultSet response = qexec.execSelect();

while( response.hasNext()){

QuerySolution soln = response.nextSolution();

RDFNode name = soln.get("?name");

if( name != null ){

System.out.println( "Hello to " + name.toString() );

}

else

System.out.println("No Friends found!");

}

} finally { qexec.close();}

}

The query searches for an exact match on swp2:me, which leads to Semantic’s
web name, Semantic Web. Note that swp2:me is the actual instance of a
foaf:Person. That instance has a property that contains its name. The instance
is not the same as its name. This allows an instance to have no name or
several names. Other instances could have the same name but not be the same
resource, which is swp2:me.
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As mentioned before, the data in the model, so far, has no notion of semantics
because it does not contain an ontology. Thus, we query for exact matches
on data.

The code also includes the general function to run a query and output the
appropriate hellos. This method repeats throughout the Semantic Web Hello
World tour. Much of the query method is due to the logistics of setting up the
query. This includes establishing the prefixes so the code doesn’t repeat the
long URI strings. The query portion actually involves just two steps: creating
the query and then executing it. The method QueryExecutionFactory()creates
the query, and the execSelect() method executes the query. We then iterate
through the result set to list the hello candidates, saying hello to the returned
values. There are many other ways to extract information, as we shall see in
the coming chapters. We stick to the query format for consistency.

Running this results in the following output:

Load my FOAF Friends

Say Hello to Myself

Hello to Semantic Web

Now that we have said hello to the Semantic Web, we say hello to all its
friends obtained through our FOAF-a-Matic. This code snippet shows the
expansion of the query by following a path outlined in the graph.

private void myFriends(Model model){

//Hello to just my friends - navigation

runQuery(" select DISTINCT ?myname ?name where{

swp2:me foaf:knows ?friend.

?friend foaf:name ?name } ", model);

}

The query simply follows or navigates the relationships as it connects the
Semantic Web with its friends. The query matches on the resource, swp2:me,
and the property, foaf:knows. This identifies the friends. We then follow the
friends to obtain their names. Any statement that contains these two elements
matches the query request. The object, ?name, is the variable that produces the
desired names. This is who the program offers the greeting, hello, to. Chapter 6,
‘‘Discovering Information,’’ goes into extensive detail about queries and other
ways to sort through the Semantic Web.

Running this snippet results in the following output:

Say Hello to my FOAF Friends

Hello to I. M. Ontology

Hello to Ican Reason

Hello to Makea Statement

Now things get interesting because we want to add additional friends from
a different source—a source based on an entirely different view of the world, a
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different vocabulary as seen in the URIs. Instead of taking the ontology from
elsewhere on the Web, which is usually the first choice, we use Protégé to
create a People ontology and associated instances of people. This forms a second
vocabulary. Protégé allows us to create classes, class inheritance relationships,
and even instances. The first two contribute to establishing the semantics.
Figure 2-6 illustrates the addition of the new class for individuals. You select
the class Thing. Then click the upper-left button in the same window to create
a new class that is a subclass to Thing. This pops up a box that allows you to
label the new class, Individual.

Figure 2-6 Using Protégé to create a new ontology class

Protégé also allows the creation of new properties. Here we add
people:hasName (Figure 2-7) and people:hasFriend (Figure 2-8). The former
is a data property because it associates individuals with literals. The latter,
people:hasFriend, is an object property because it relates two resources such
as individuals. Relationships exist outside of resources and thus can be used
in multiple ways. This forms a simple ontology with classes and relationships.

Next we add a couple new friends based on the People ontology and relate
them to one another. You can also add the properties for each instance on the
lower-right side, such as their name and associations. Figure 2-9 illustrates
Protégé containing three instances with their properties: one for the Semantic
Web itself and two new friends.
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Figure 2-7 Using Protégé to create a new data property

Figure 2-8 Using Protégé to create a new object property
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Figure 2-9 Protégé adding new instances

Once we complete our additions in Protégé, we save the project. This
also creates a file containing the ontology and instances. We could then
load the file into the model as before, but we take an extra step of sep-
arating the ontology statements from the instance statements. One file,
additionalFriends.owl, contains only the new instances or friends. An addi-
tional file, additionalFriendsSchema.owl, contains the semantics or classes
and relationship types. This parallels the treatment with the FOAF data and
enables more efficient reasoning. You do not need to do this for your example.
We note the reason for this in the upcoming examples.

//Add my new friends

System.out.println("add my new friends");

hello.populateNewFriends();

.

.

.

private void populateNewFriends() throws IOException {

InputStream inFoafInstance =

FileManager.get().open("Ontologies/additionalFriends.owl");

friends.read(inFoafInstance,defaultNameSpace);

inFoafInstance.close();

}
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Here we are going to add only the new friends or the instances we created
using Protégé. The code is identical to the previous population of FOAF friends
except the file is different. Now the friendsmodel contains two sets of friends
based on two different vocabularies or schemas. If we run hello.myFriends()

a second time, it still says hello only to the same set of friends—the new
ones are missing from the hello greeting. This is due to using two different,
incompatible definitions or syntax formats for describing the friends. The
first one used the FOAF ontology. The one we created used our new People
ontology.

Examine the new file of instances we created via Protégé to see why the new
friends did not get the hello greeting.

:Individual 5

rdf:type :Individual ;

:hasFriend :Individual 6 , :Individual 7 ;

:hasName "Sem Web" .

:Individual 6

rdf:type :Individual ;

:hasFriend :Individual 5 ;

:hasName "Web O. Data" .

:Individual 7

rdf:type :Individual ;

:hasFriend :Individual 5 ;

:hasName "Mr. Owl" .

We have added to the Semantic Web here with an alias, ‘‘Sem Web,’’
and his two friends. Note that whereas friends in the previous graph used
foaf:person, this graph refers to them as people:Individuals. (Note that the
People ontology is the default namespace, so it is not listed in this code.)
Even though in these two friend-tracking ontologies the ideas are semantically
equivalent, they have a syntactic difference. This difference causes the original
helloFriends query to not find any of these friends, much less identify ‘‘Sem
Web’’ as the same as Semantic Web. They did not match the key relationship
of foaf:knows. Since the syntax doesn’t match, the query addresses only our
original friends in the first file. The new friends are in the model but are not
represented as friends compatible with FOAF.

In order to align these two different names, foaf:Person and people:

Individual, we need to align the semantics. This will make them semantically
the same even though they retain their syntax differences. When we are
finished, the graphs will unify to produce the correct chorus of hellos. First we
need a model that contains the associated ontologies of both friend instances,
FOAF and People. The ontologies declare relationships to foaf:Person and
people:Individual. Here we have two, the FOAF ontology and our People
ontology. Figure 2-10 graphs the key portions of FOAF and People ontologies.
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foaf: Person

foaf

p: Individual

p: hasFriend

foaf: mbox foaf: Name

foaf: knows

people

p: hasName

Figure 2-10 Graph of FOAF subset and People ontologies

We create a new model to hold the ontologies and then populate them as
follows:

Model schema = null;

// Add the ontologies

System.out.println("\nAdd the Ontologies");

hello.populateFOAFSchema();

hello.populateNewFriendsSchema();

.

.

.

private void populateFOAFSchema(){

schema = ModelFactory.createOntologyModel();

schema.read("http://xmlns.com/foaf/spec/index.rdf");

friends.read("http://xmlns.com/foaf/spec/index.rdf");

}

private void populateNewFriendsSchema() throws IOException {

InputStream inFoafInstance =

FileManager.get().open("Ontologies/additionalFriendsSchema.owl");

friends.read(inFoafInstance,defaultNameSpace);

inFoafInstance.close();

}

Remember, we separated these new friend statements into two files; one
containing the new instances (friends) and one containing the ontology or
schema. The latter is stored in the file additionalFriendsSchema.owl, which
is loaded in the code above. Now the models contain both ontologies and both
sets of instance data.

Although the new ontologies detail the relationships within each ontology,
they do not contain any statements as to how the ontologies relate to one
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another. This requires additional statements to align the two ontologies. These
additions bridge the two ontologies in key areas, allowing our query to include
all friends instead of just those from one or the other ontology. This ontology
alignment is not strictly necessary. If the query was changed to incorporate the
knowledge of how the two ontologies relate to one another, it would return all
the friends, but this approach couples the query to each added data set. This
is a complex and brittle approach because every addition of new data requires
rewriting the queries.

The use of ontologies and associated alignment statements allows a Semantic
Web program to incorporate new ontologies and data incrementally as the
application and its users learn about them. Thus, you can add ontologies
together (and instance data) and adjust them over time. You do not need to
have a priori knowledge of how the alignment occurs. This is exactly what our
tour does. You can actually add alignment statements during the running of
your Semantic Web application. As you will see, this is a tremendous benefit
in handling the integration of Semantic Web data. We are doing just that in
our example. First, we add the two files of instance data based on different
vocabularies. This does not break the existing query, but it also does not
expand its capability at returning friends. Next, we add statements to align the
two ontologies. The program can dynamically add alignment when needed.
While awaiting the alignment statements, the original query works as before
without any problems or complications.

Quickly you can see the similarities between the two ontologies. We take
advantage of the similarities between the two ontologies and relate them to
one another by extending the ontology model that now contains both. We add
statements to the ontology that express the following observations.

people:Individual is equivalent to foaf:Person.

people:hasName is equivalent to foaf:name.

people:hasFriend is a subproperty of foaf:knows.

We have two choices: make the pair fully equivalent or make one a
specialization of the other. Consider the semantic choices in choosing a
specialization relationship over an equivalent relationship. A foaf:Person

and a people:Individual refer to the same concept and hence are equivalent.
A foaf:knows relationship between two people indicates some knowledge
of a person but not necessarily a friendship with that person. Therefore,
we make people:hasFriend a specialization of foaf:knows. Each of these
statements allows inferences that relate instances of type foaf:Person and
people:Individual. We shall see the impact of these inferences shortly.

There is one other concern the instance data presents. Both data sets
describe the same instance or person, the Semantic Web. There are two distinct
references to the Semantic Web with two different names: ‘‘Semantic Web’’
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and ‘‘Sem Web.’’ We need to relate these two resources to each other with an
additional statement that makes the instances equivalent. Thus, the Semantic
Web concept becomes consistent across both data sets.

The following code creates four statements that align the two data sets and
adds them to the schema model as previously instructed. There are several
ways to add statements. This code illustrates the programmatic method for
adding statements. You could also use Protégé to create the statements and
read in the statements as accomplished earlier from the Protégé saved file.

// State that :individual is equivalentClass of foaf:Person

Resource resource =

schema.createResource(defaultNameSpace + "Individual");

Property prop = schema.createProperty("owl:equivalentClass");

Resource obj = schema.createResource("foaf:Person");

schema.add(resource,prop,obj);

//State that :hasName is an equivalentProperty of foaf:name

resource = schema.createResource(defaultNameSpace + "hasName");

prop = schema.createProperty("owl:equivalentProperty");

obj = schema.createResource("foaf:name");

schema.add(resource,prop,obj);

//State that :hasFriend is a subproperty of foaf:knows

resource = schema.createResource(defaultNameSpace + "hasFriend");

prop = schema.createProperty("rdfs:subPropertyOf");

obj = schema.createResource("foaf:knows");

schema.add(resource,prop,obj);

//State that sem web is the same person as Semantic Web

resource = schema.createResource("swp2:#me");

prop = schema.createProperty("owl:sameAs");

obj = schema.createResource("http://swp2:#Individual 5");

schema.add(resource,prop,obj);

The first new statement aligns the class foaf:Person with the class
people:Individual by declaring them equivalent. It creates the resources for
the subject and object along with the property. It then adds the statement to the
model. The second statement aligns the property foaf:name with the property
people:hasName by also declaring their equivalence. The third statement
aligns foaf:knows with people:hasFriend by declaring people:hasFriend to
be a subproperty of foaf:knows. The fourth and final statement declares the
two instances of the Semantic Web to be the same. Figure 2-11 illustrates the
additional statements that align the ontologies.

Regardless of how many friends the Semantic Web may have, if they are
expressed according to either of these two ontologies, a query requesting the
Semantic Web’s friends returns them all. This occurs with the addition of only
the first three statements. Keep in mind that the data need not be in the same file
or same location. In addition, the alignment statements can be kept separate in
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a different file or location. This allows you to maintain different alignment files
for different alignment missions (more on that later). Any data read into the
model that conforms to these two ontologies allows the program to identify all
the friends. Moreover, should more data become available expressed in a new
ontology, only the relations between the various ontologies need to align the
additional data. More work is still needed to produce all the necessary hellos.
These statements relate only the ontologies to each other and not the instances
(friends, in our case). They provide the logical foundation to add statements
that equate the instance data. Thus Ican Reason remains only a Foaf:Person

and not a People:Individual. Alas, our query would still not say hello to any
of the new friends.

foaf: Person

foaf

p: Mep: Statement p: Reasoner

reason@firofex.com

p: Individual 5 p: Individual 7

p: hasFriend

p: hasFriend

rdf: type

rdf: type

p: Individual

p: hasFriend

p: Individual 6

p: Ontology

foaf: mbox foaf: Name

foaf: knows

rdfs: subPropertyOf

owl: sameAs

people

p: hasName

p: hasName

p: hasName

rd
f: 

ty
pe

Sem Web

Web O Data

Mr. Owl

rdf: typerdf: type rdf: type

foaf: knows

foaf:
mbox

rdf: type
foaf: knows

p: hasName

Schema
Instance

Schema
Instance

owl: equivalentProperty

owl: equivalentClass

Ontology

Ontology

Figure 2-11 Ontology alignment

A reasoner, like one Jena includes, supplies the additional inferred state-
ments or entailments. In fact, Jena has several reasoners and also supports the
ability to interface with external third-party reasoners. Chapter 4, ‘‘Incorpo-
rating Semantics,’’ covers this topic in more detail, but for now we will use
Jena’s default OWL reasoner. The following function details the acquisition
and execution of the reasoner. The reasoner examines the ontology statements
and, based on its reasoning ability, adds inferred or entailed statements. The
reasoner stays bound to the model, and future statement additions will also
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produce appropriate entailments. The reasoner, given the additional align-
ment statements shown previously, adds statements that make each instance
of a foaf:Person a People:Individual and so on. Whereas there was previ-
ously one statement referring to Ican Reason as a foaf:person, there are now
additional statements that declare Ican Reason a people:Individual also. A
query could use either concept to acquire Ican Reason. The following code
details the methods to acquire and bind the Jena reasoner to the model:

private void bindReasoner(){

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

reasoner = reasoner.bindSchema(schema);

inferredFriends =

ModelFactory.createInfModel(reasoner, friends);

}

The method acquires the Jena OWL reasoner and then binds it to the
schema we saved earlier. This schema or ontology separation allows some
precalculations to improve performance of the reasoning. It then creates a
model bound to the reasoner based on the friends model. This extends the
friends model to include all the entailments inferred from the ontology,

including our added statements and entailments from any future additions.
This also allows the program to return to the original model, which does not
contain any entailments.

You can also try out the external reasoner Pellet instead of Jena’s internal
reasoner. The following snippet shows the code for using Pellet:

private void runPellet( ){

Reasoner reasoner = PelletReasonerFactory.theInstance().create();

reasoner = reasoner.bindSchema(schema);

inferredFriends = ModelFactory.createInfModel(reasoner, friends);

}

The Pellet reasoner implements the same interface as the Jena reasoner. This
allows a program to easily use different reasoners for different purposes, a
topic further explored later in Chapter 4, ‘‘Incorporating Semantics’’.

Finally, we are ready to extend our hello to everyone in the Semantic Web
model. The following code contains the output with hellos that include the
two new friends. Note, we run the exact same query as before:

Run a reasoner

Finally – Hello to all my friends!

Hello to I. M. Ontology

Hello to Ican Reason

Hello to Makea Statement

Hello to Mr. Owl

Hello to Web O. Data



56 Part I ■ Introducing Semantic Web Programming

The combination of the two ontologies and instances creates an interesting
anomaly. This is revealed by running the hello to just the Semantic Web again.

Hello to Semantic Web

Hello to Sem Web

The model maintains one Semantic Web foaf:Person (also equivalent to
people:Individual) but now with two names. This is not unusual. The model
now contains the knowledge that there is only one Semantic Web that it knows
of. It just happens to have two names. Since this ontology does not limit the
number of names, the model can contain as many names as desired, but they
all are related to the same foaf:Person resource. The ontology statements
we added previously overcome the syntax differences between the statements
regarding the owner, the Semantic Web.

Now we’ll go in the opposite direction. Instead of adding friends, we create
subsets of friends—subgroups of the friends we already have. We outline
steps to constrain the hello greetings to a selected subset of friends. The hello
tour illustrates two such subsets: email friends and email friends who use a
Gmail address. Email friends have at least one email address, so we could
send the hello via email. Gmail friends have an email address in the gmail.com
domain.

Email friends need only be a foaf:Person (remember that people:

Individual is equivalent) and have a foaf:mbox relationship. There are
several ways to achieve this, but we want the ontology to contain this
information. Therefore, we create a special concept, or class, that forms a
restriction. Restrictions outline the logic for membership within the restricted
class and are described in detail in Chapter 4. Restrictions have lots of
interesting uses, including declaring a collection of instance statements
associated with a class through inference. The following code outlines the
restriction for email friends:

people:EmailPerson

rdf:type owl:Class ;

rdfs:subClassOf foaf:Person;

owl:equivalentClass

[ rdf:type owl:Restriction ;

owl:minCardinality " 1 " ˆ ˆ xsd:nonNegativeInteger ;

owl:onProperty foaf:mbox

] .

The restriction notes that in order to be a member of the class
people:EmailPerson you must have at least one foaf:mbox. All of the original
friends have email addresses, and so they would all be entitled to be of type
people:EmailPerson. We also restrict it to a specialization of foaf:Person
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(and hence People:Individual) to avoid other concepts that have email
addresses that are not people, such as a laser printer. Now we read in the
restriction to the reasoner-bound model and query for email friends. This
results in correctly identifying friends with email addresses. We could use
this list to send out emails. The restriction is no different from other Semantic
Web statements. You could create the restriction with Protégé, Jena program
steps, or simply a text editor.

In order to restrict our friends further, we want only friends with gmail.com
email addresses. This goes beyond the ontology constructs because we actually
need a method to perform a partial string match, although this construct is
now possible in OWL 2, as we show in Chapter 5. For now, we want to
demonstrate a simple rule. We want to match an email address that contains
the string gmail.com. We could also use methods in a query, as you will see
in Chapter 7. Nevertheless, for the purposes of this example, we will use a
Semantic Web rule. Rules expand or increase ontology expressivity.

Like reasoners, there are many rule engines, each with its own rule language.
For simplicity’s sake, in this example we use Jena Rules. We establish a rule
that finds gmail.com email addresses and creates a statement that associates
the instance subject with a GmailPerson ontology class. This is similar to what
the reasoner did before, but rather than follow the ontology logic, it follows
the specified rule. Rules are excellent vehicles for transformation between two
ontologies and are fully explored in Chapter 10, ‘‘Aligning Information.’’ An
individual resource may be an instance of multiple classes.

private void runJenaRule(Model model){

String rules = "[emailChange:

(?person foaf:mbox ?email),strConcat(?email,?lit),

regex( ?lit, "(.*@gmail.com)’)

-> (?person rdf:type> People:GmailPerson)]";

Reasoner ruleReasoner = new GenericRuleReasoner(Rule.parseRules(rules));

ruleReasoner = ruleReasoner.bindSchema(schema);

inferredFriends = ModelFactory.createInfModel(ruleReasoner, model);

}

The string rules contains the rule. Here the rule finds statements with
a foaf:mbox and then tests the foaf:mbox entry for gmail.com using a rule
method, regex(). If both conditions are true, foaf:mbox and gmail.com, a
statement is added to the model that relates the matched person instance with
the class, person:GmailPerson. Thus, a query looking for GmailPerson would
return all foaf:Persons that have a gmail.com address. As noted before, your
program needs only to bind the reasoner to the appropriate model. Once
bound, the reasoner continually fires when necessary. So if a new friend was
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added with a gmail.com address, the reasoner would follow the rule and also
make the friend a person:GmailPerson.

Hello to Makea Statement

Hello to I. M. Ontology

Now after all that, we make sure we can still send out a hello to all our
friends. Say hello to all the Semantic Web friends again. This ensures us that
we haven’t placed incorrect or unintended logic that confused our friend list.
It is always a good idea to have requirement questions that help ensure the
integrity of the model as changes are made.

Hello to I. M. Ontology

Hello to Ican Reason

Hello to Makea Statement

Hello to Mr. Owl

Hello to Web O. Data

Yes, it works! We produced a single program that incorporates multiple,
incompatible data sets that we unified and adapted to fulfill all our hello
desires.

SLASH VS. NUMBER SIGN VOCABULARIES

You may have noticed that two types of references exist in declaring a
namespace for Semantic Web vocabularies. Examine the prefixes in the code
above that outline the various vocabularies. The FOAF ontology uses a slash (/).
The People ontology, the one we created, uses a number sign (#). The URI
specification refers to the number sign as a fragment identifier. See
http://www.ietf.org/rfc/rfc3986.txt. Both are acceptable and work
properly with the Semantic Web and a web browser. However, they behave
differently with a browser. Whereas slash details a page on the web, a number
sign details a location on a web page.

So which do you use? We recommend that small, relatively static
vocabularies use the number sign. The number sign allows the entire
vocabulary to fit in one file, with the number sign delineating the various
classes, relationships, and the like. Large, dynamic vocabularies use the slash.
This allows individual components to exist on many pages.

Summary

We have covered a lot of territory quickly with basic explanations. In fact, we
touched on almost every major topic in the book—a rather big hello. We loaded
ontology and instance data, queried it, added more instance data, bound the
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instances to ontologies, and then aligned the ontologies. We used a reasoner
to infer information into models based on the ontologies, and finally we went
the other way and restricted the hellos to a subset of the initial data. First,
we restricted it to friends with email addresses and then only to friends with
gmail.com email addresses using a special class construct and a rule engine.
Along the way we glimpsed many of the techniques and issues we will expand
on in the coming chapters. Table 2-1 summarize each tour stop.

Table 2-1 Semantic Web Hello World Tour Summary

HELLO TOUR STOP TECHNIQUE NOTES

Hello to the Semantic
Web

Searched for me Added FOAF instances

Hello to Semantic Web
friends

Searched/navigated for
friends of me

Attempt a hello to all
friends, new and old

Added new people
friends

New friends not semantically
aligned; no hellos

Attempt to say hello
to all

Added both FOAF and
People ontologies

New friends still not
semantically aligned; no
hellos

Attempt to say hello
to all

Added alignment
statements

Ontology aligned but not the
instances; missing reasoner

Hello to all
friends—success

Bounded reasoner to
data

Instances now aligned
through the extra statements
from the reasoner

Limit hello to email
friends

Created a class based on
a restriction

Produced a subset of friends

Limit hello to
gmail.com friends

Created a rule and
bounded a rule engine

Produced a more refined
subset based on a string
match

Say hello to all friends Same original query Assured all data and logic are
intact

Now that you have a brief programming foundation, you can start building
on it. The next part of the book takes you into the knowledge model itself and
its associated constructs. That is followed by full applications that build on
the FOAF ontology and beyond. We hope you enjoyed the tour. We trust you
were able to gain some hands-on experience. This will prove helpful in the
chapters ahead.
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II
Foundations of Semantic Web

Programming
There are two primary aspects to Semantic Web
programming: knowledge representation and appli-
cation integration. This section focuses on the
former–representing and manipulating knowledge
using the resource description framework (RDF)
data model, ontologies (OWL), queries, rules, and
reasoning. Each of the five chapters in this section
builds the foundations of knowledge representation in
the Semantic Web.

Chapter 3 establishes the data model of the Semantic
Web: the Resource Description Framework (RDF). The
chapter highlights the key differences between RDF
and other traditional data representations like XML
or relational databases, pointing out the distinction
between syntax and semantics. RDF provides a flexi-
ble and highly expressive data model onto which the
Semantic Web is built. All information in an RDF model
can be conceptualized as statements about resources.
These statements are much like statements in the
English language–they have subjects, predicates, and
objects. This chapter presents the features and limita-
tions of RDF and introduces its abstract structure as
well as its numerous concrete syntaxes.

Chapter 4 uses the OWL Web Ontology Language to
add semantics to the RDF data model. OWL provides
a vocabulary of terms that can be used in RDF state-
ments. These terms have special semantics associated
with them that are used to give meaning to the data
they describe.
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Semantics provide rich meaning such as taxonomical relationships between
terms, model restrictions, and logical assertions. This chapter is about seman-
tics in the Semantic Web, and it covers the second version of the OWL Web
Ontology Language (OWL 2). RDF Schema (RDFS) is covered as a subset of
the OWL 2 vocabulary.

Chapter 5 bridges the gap between the abstract world of OWL knowledge
modeling and the real world. The chapter begins by exploring the tools and
technologies that implement OWL semantics and how they integrate to create
a Semantic Web framework. A number of real world knowledgebase, reasoner,
and triple store projects are discussed and their relative merits compared. Next,
the profiles of OWL 2 are described and a programming example is presented
that compares the side effects of various levels of reasoning (none, RDFS,
and OWL) on the information that is derived from an example ontology. The
chapter concludes with a detailed look at working with ontologies, including
application-ontology integration and ontology reuse and sharing.

Chapter 6 takes a close look at retrieving useful information from the
Semantic Web. There are three general methods of retrieval: search, navigation,
and query. Each method has its proper use and relative merits. Search provides
a way to identify and retrieve information using an approximate match and is
useful when you don’t know exactly what it is you are looking for. Navigation
enables information discovery through a process of traversing the relationships
that exist between pieces of information, much like a Web surfer explores the
World Wide Web by traversing the hyperlinks that connect Web pages.

Finally, querying involves the retrieval of precise sets of information using
the SPARQL Query Language for RDF. The bulk of this chapter is spent
exploring the features of SPARQL.

Chapter 7 presents rules in the Semantic Web. Rules can be used to cre-
ate additional formalisms in a knowledge model that can’t necessarily be
represented using an ontology. The chapter presents the Semantic Web Rule
Language (SWRL) as the de facto rule language for the Semantic Web. SWRL
can be used to model implications (if-then statements) that can be used to
express domain knowledge, map between the concepts of various ontologies,
or translate data. Rules extend your capabilities beyond OWL representations
which is useful form various ontology transformations.
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3

Modeling Information
‘‘It’s not what you think, it’s how you think.’’

—Anonymous

In this chapter, we expand the discussion from Chapter 1 into some of the
fundamental technologies and approaches for dealing with information in
applications for the Semantic Web.

On the Semantic Web, information is modeled primarily with a set of three
complementary languages: the Resource Description Framework (RDF), RDF
Schema (RDFS), and the OWL Web Ontology Language. RDF defines the
underlying data model and provides a foundation for the more sophisticated
features of the higher levels of the Semantic Web layer cake. Semantic Web
information modeling with RDF is the main subject of this chapter. In this
chapter we discuss the problem of information sharing and present the model
adopted by Semantic Web technologies as one solution to this problem. You’ll
learn about the important underlying concepts of RDF and how to write your
own RDF documents in some of the most popular formats, and you will write
a short program to read and write RDF.

In summary, in this chapter you will:

Learn about information sharing in general

Explore the Semantic Web approach to information sharing, RDF

Learn about popular RDF encodings

Write a program using Java to manipulate RDF data

63
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Modeling Information in Software

In software systems, information modeling is of the utmost importance. The
attributes of real-world objects that you choose to capture in your software and
the way that you choose to represent them largely determine the operations
that your system can perform and the questions that it can answer. In a
semantic system this is even more important, because by modeling concepts
and objects with sufficient rigor, it is possible to reuse data from one application
in another.

All but the simplest software must be designed with an information model
of some sort. The character of the information model depends on the aims of
the program and the context for which it is designed. For instance, consider
a simple application that manages a collection of mailing addresses. One
approach is to model the information as a set of related objects. You might
expect a Person class and an Address class, each with various appropriate
data members. An alternate approach, contrasted in Figure 3-1, is to use a
relational model and to think of a Person table and an Address table, each with
appropriate columns for values, and a link table to define the relationships
between them.

Person 
+FirstName : string 
+LastName : string 
+MiddleInitial : string 
+Addresses : Address[]

Address 
+StreetNo : string 
+AptOrSuite : string 
+City : string 
+StateOrProvince : string 
+PostalCode : string

CREATE TABLE Person { 
ID : LONG, 
FirstName : VARCHAR, 
LastName : VARCHAR, 
MiddleInitial : CHARACTER
};

CREATE TABLE Address { 
ID : LONG 
StreetNo : VARCHAR, 
AptOrSuite : VARCHAR, 
City : VARCHAR, 
StateOrProvince : VARCHAR, 
PostalCode : INTEGER 
};

CREATE TABLE Person_Address_Link {
ID : LONG, 
PersonID : LONG, 
AddressID : LONG 
};

Object-Oriented Approach

Relational Approach

Figure 3-1 Two approaches to modeling people and addresses
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Each type of information model presents its own set of advantages and dis-
advantages. For instance, an object model is very flexible, and it can be directly
coupled with behaviors in object-oriented programming languages. A rela-
tional model, on the other hand, easily translates to use in a relational database,
which can offer superlative scalability, fast querying, transactions, and per-
sistence across sessions. Often a single software system will support several
representations of its information precisely in order to exploit the strengths of
each. A good example of this is database-backed software, which uses a rela-
tional model for data storage and retrieval but loads information into objects for
business processing. Semantic Web technologies are based on an information
model that is designed to facilitate easy data sharing and interoperability.

Sharing Information: Syntax and Semantics
The problem of sharing data between systems can be broken into two
important subproblems: the syntactic sharing problem and the semantic shar-
ing problem. The syntactic aspect of the data-sharing problem involves gaining
access to the shared data, while the semantic aspect involves incorporating
that information into the data structures of the consuming system.

Consider the case of two people who are trying to communicate with
each other. There are many ways to communicate, and depending on the
circumstances, they may choose one approach or another. They could speak
or write to each other, but they could also use Morse code, semaphore flags, or
even something more exotic, like smoke signals. Finding a common medium
for communication is analogous to the syntactic aspect of sharing data. It is
a very important first step in the information-sharing problem. If one person
decides to sit down for a chat, but the other is planning to send smoke signals,
they will have a hard time exchanging ideas!

Once a proper medium is chosen, the two people must agree on a shared
language, or encoding, for their ideas. A language is a way of mapping the
ideas in our heads into a form that can be communicated with others. To
communicate, people must agree on a medium and a common language. If
two people speak different languages, they will not be able to understand
each other, even if they have both decided to communicate via, for example,
spoken words. Finding a mutually intelligible encoding of concepts within the
common medium is analogous to the semantic data-sharing problem.

To illustrate the difference between syntax and semantics, consider three
approaches to information representation and the implications for sharing
data. In each case, the scenario is a simple one: Two software systems each
maintain information about a common domain. The first system, the producer,
has information that the second, the consumer, wishes to incorporate.
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Serialized Objects

The first approach is the simplest and most straightforward: binary object
serialization. With binary object serialization, the producer generates objects
that represent the data that is to be shared, and the data values in these
objects are then directly serialized as ordered collections of bytes.

This technique, while easy to implement for the producer, can be properly
integrated only with a great deal of insight on the part of the consumer.
The consuming system must know the exact details of the producer’s data
structures merely to address the syntactic data-sharing problem. The semantic
data-sharing problem creates additional challenges. The consumer must know
all of the object data members of the producer and precisely how each maps
to the corresponding data structure within the consumer, if it even exists.
The amount of foreknowledge required significantly impacts the utility of this
method of sharing information.

Relational Databases

A relational database can offer significant improvements over serialized objects
for exchanging information, but this approach is not without its own short-
comings. Relational databases are usually distinct, reusable components that
are not concerned with the main business logic of a software system. This
has led to the standardization of APIs for interacting with them, for instance,
Open Database Connectivity (ODBC) or Java Database Connectivity (JDBC).
In addition, most relational databases support Structured Query Language
(SQL) queries as a means to retrieve the data they contain. Use of one of these
APIs and SQL can greatly reduce the complexity of the syntactic data-sharing
problem. Software written to issue SQL queries against one database can often
be adapted to use a second database without major changes.

There are still difficulties, however. Even with the use of a standard API
and SQL, the syntactic sharing problem still exists. ODBC and JDBC provide
a standard software interface, but each database vendor provides its own
product—and even version-specific driver implementations. Without knowing
a priori whether the producer is using Oracle or Microsoft SQL Server, for
example, the consumer cannot easily access the producer’s database.

In addition to the syntactic challenges, the semantic problem remains. With-
out a detailed understanding of the database schemata and table definitions,
it can be very challenging to integrate even the simplest databases.

Extensible Markup Language (XML)

XML is currently a very popular and effective way of exchanging information.
XML languages conform to a well-defined syntax that is compatible with many
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widely available parsers. XML can provide an effective solution to the syntax
problem for data sharing. In spite of the strict constraints on XML’s structure,
the lack of reserved keywords or predetermined vocabulary of terms makes it
flexible enough to be used for a wide variety of applications.

Despite its flexibility, XML does not address the semantic data sharing
problem. It is true that it is possible to define custom elements and to use
XML Stylesheet Transformations (XSLTs) to convert one syntax to another, but
XML elements and attributes have no meaning by themselves. Also, XSLTs are
highly syntax-specific and therefore very fragile. If anything should change
about either the producer’s or the consumer’s XML format, the stylesheets
would need to be updated. Even a very minor change, like reordering two tags,
could create a great deal of work for system developers. Without any means of
encoding the meaning of and the relationships between XML elements, there
is no way to determine the impact of a change in order or terminology.

These three data-sharing solutions—binary object serialization, relational
databases, and XML—show a progression through time and sophistication
dealing solely with the syntactic data-sharing problem. Even today, the
task of merging two XML documents is a significant amount of work. This
is because the focus of these interoperability efforts has not been on the
semantic data-sharing problem. This is understandable because the syntactic
data-sharing problem must be overcome before the semantic data sharing
problem can even become an issue. What would the structure of the tables
of a relational database matter if there were no way to issue it queries? Once
there is agreement on a communication medium, then the work can begin on
a way to express ideas. Progress on the semantic data-sharing problem comes
from the realization that, in practical terms, the distinction between data and
metadata is an illusion.

Metadata and Data in Information Sharing
Data and metadata are different. Data is values, individual atoms of infor-
mation, and metadata describes the relationship between those atoms and
other data. In applications, the amount of data typically dwarfs the amount of
metadata. Metadata also usually changes much less frequently than data. A
complex database might have tens or hundreds of tables but could easily have
millions or tens of millions of records, and it could be updating those records
weekly or even daily.

Take, for instance, the case of a database for Ultra-Mart’s chain of retail stores.
Suppose Ultra-Mart uses its customer loyalty cards to maintain information
about customers and what they buy. The database keeps track of information
about customers (maybe name, gender, age, and address) and their purchases
(say, item UPC, quantity, price at checkout, and date of purchase). In this case,
the metadata in the database would represent information about each of these
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fields—that name should be a string of characters, but that price should be a
number, for instance. With the fields suggested so far, there would be on the
order of ten values of metadata. The data, on the other hand, would be all of the
values in the tables described by the metadata. That means information about
all of Ultra-Mart’s thousands of customers and then about each of the millions
of purchased items per day. This relationship between data and metadata is
very common, and typically relational databases are used in these situations
because of their impressive performance characteristics.

However, recall that for all of the strengths of relational databases, they still
present semantic information-sharing challenges. Seen from the perspective
of the information-sharing problem, data and metadata are really two halves
of the same whole. Values without metadata from a producing system cannot
be incorporated into a consuming system. Similarly, collections of metadata
without values are rarely of any use. Usually the melding of data and metadata
takes place in the application developer’s head, but automated information
sharing cannot depend on a human in the loop. To allow computers to share
information automatically, data and metadata must be grouped together. In
a sense, without metadata, there is nothing to talk about, and without data,
there is nothing to say.

The combination of data and metadata greatly reduces the information-
sharing problem at the semantic level. Together data and metadata make
information portable because the relationships among data values remain
independent from their storage. Treating metadata as data also simplifies
the implementation of tools, since a single representation can be used for
both types of information. Metadata as data also gives a new degree of
flexibility because existing information can be augmented with additional
metadata as easily as adding new values. These are powerful advantages for
an information-sharing approach, and they are compelling reasons to choose
the Semantic Web approach for information interchange.

The Semantic Web Information Model:
The Resource Description Framework (RDF)

On the Semantic Web, information is represented as a set of assertions called
statements made up of three parts: subject, predicate, and object. Because of
these three parts, statements are also sometimes referred to as triples. The three
elements of a statement have meanings that are analogous to their meanings in
normal English grammar. The subject of a statement is the thing that statement
describes, and the predicate describes a relationship between the subject and
the object. To clarify, consider the following Listing 3-1 about the authors of
this book.
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Andrew knows Matt.

Andrew’s surname is Perez-Lopez.

Matt knows John.

Ryan works with John.

Listing 3-1 Information about the authors

Figure 3-2 is a graphical representation of that small set of information.
Assertions of this form naturally form a directed graph, with subjects and
objects of each statement as nodes, and predicates as edges. This is the data
model used by the Semantic Web, and it is formalized in the language called
the Resource Description Framework (RDF).

N O T E Throughout the book, we will be using diagrams to visualize RDF graphs.
We will adopt the following common conventions: Resources are represented by
ovals, literals are represented by rectangles, and predicates are represented by
arrows. The direction of the arrow always points from the subject of a statement
to the object of the statement.

Andrew

Matt

Perez-Lopez

surname

knows

knows

worksWithRyan

John

Figure 3-2 A graph representation of the sentences from Listing 3-1

Nodes: Resources and Literals
The nodes of an RDF graph are the subjects and the objects of the statements
that make up the graph. There are two kinds of nodes: resources and literals.
Literals represent concrete data values like numbers or strings and cannot be
the subjects of statements, only the objects. Resources, in contrast, represent
everything else, and they can be either subjects or objects.

In RDF, resources can represent anything that can be named. A resource is,
in fact, nothing but a name—a name that represents an object, act, or concept.
Resource names take the form of Internationalized Resource Identifiers.
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INTERNATIONALIZED RESOURCE IDENTIFIERS

The Internationalized Resource Identifier (IRI) is an extension of the more
familiar Uniform Resource Identifier (URI) that provides an encoding for
Unicode character sets. In light of the similarity between IRIs and URIs, and the
greater familiarity of most people with the latter, we will use the term IRI and
URI interchangeably throughout this book.

IRIs are an essential part of the underlying infrastructure of the World Wide
Web. An IRI is simply a standardized way of naming resources. Some IRIs
include information about how to access such a resource on the Internet, and
this subclass of IRIs is referred to as the Uniform Resource Locator, the URLs
with which we are all familiar.

In general, IRIs take the following form:

where the scheme describes what type of IRI it is, and the subsequent portions
more completely name the resource. The following examples of URIs should
make this clear:

http://www.semwebprogramming.com:80/index.html

ftp://server.example.com/foo

gopher://gopher.floodgap.com/1/v2

mailto:person@example.net

urn:isbn:978-0553283686

While some of these IRIs may look more familiar than others, all are valid.
Note that while IRIs often contain information that would allow an application
to retrieve the resource, such as the server name or port, they need not. The
last IRI is a Uniform Resource Name (URN) that describes a book by its
International Standard Book Number (ISBN), but the book is not a resource that
is resolvable on the Web. In general then, the IRI scheme provides a vast
hierarchical namespace for resources of various kinds, which may be—but are
not necessarily—accessible via the Web.

IRIs provide a foundation for a data-sharing infrastructure because they all
exist within a single universal namespace. This means that every statement
with a named resource as its subject unambiguously describes that particular
resource, regardless of where the statement is asserted. Whereas a particular
row in a database table is identified with a primary key unique to one table
within one database, an IRI is a name that is universally unique. An IRI remains
valid in any context, which means that information expressed in RDF is much
more portable than information expressed in other ways.

In the previous figure, all of the resources are people, but consider the graph
in Figure 3-3.

In the statement shown in this graph, the subject is Andrew, and the object is
SoftwareEngineer. While Andrew is a person, software engineer is more abstract;
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it is a concept. This generalized notion of resource allows statements in RDF
to describe almost anything, including concrete objects and abstract concepts.

Andrew
hasJob

SoftwareEngineer

Figure 3-3 Resources can represent people, like Andrew, or concepts, like software
engineer

Edges: Predicates
Predicates, also called properties, represent the connections between resources;
predicates are themselves resources, however, and RDF statements can be
made about predicates just as they can about any other resources. Like
subjects, predicates are represented as IRIs. In the previous figures, we labeled
resources without full IRIs for convenience sake, but now we will show the
graph from Figure 3-2 as a graph with IRIs (see Figure 3-4). Because these full
IRIs can clutter up a diagram for the rest of the chapter, we will use prefixes
unless there is a particular reason to highlight the full IRI.

http://semwebprogramming.net/people#Ryan

http://xmlns.com/foaf/0.1/knows

http://xmlns.com/foaf/0.1/surname

http://xmlns.com/foaf/0.1/knows

http://semwebprogramming.net/2008/06/ont/ 
foaf-extension#worksWith

Perez-Lopez

http://semwebprogramming.net/people#Andrew http://semwebprogramming.net/people#John

http://semwebprogramming.net/people#Matt

Figure 3-4 The graph from Figure 3-2, now more accurately represented with IRIs for
each resource

One special type of predicate defined by RDF is type. The rdf:typepredicate
is used to group resources together. In Figure 3-3, we drew the distinction
between Andrew as a person and SoftwareEngineer as a concept. That was an
assumption based on knowledge that we, as humans, have but that was not
represented in the graph. To be more accurate, we should assert that Andrew
is a person with a statement that gives Andrew a type. In Figure 3-5, the
resource Andrew is associated via the rdf:type predicate with a resource that
represents the notion of a Person.
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People:Andrew foaf:Person
rdf:type

Figure 3-5 Andrew is designated as being of type foaf:Person

RDF supports a very permissive notion of type. Even though type is a special
predicate defined in RDF, it is really just a predicate like any other. That is, the
fact that there is a statement that asserts that Andrew is of type Person does
not in any way preclude there being other statements about Andrew’s type.
Any resource can have any assertions made about it, including many or no
rdf:type assertions.

Exchanging Information with RDF

RDF is a data model optimized for sharing and interchange. This ease of
interchange arises from some of the characteristics of RDF that we’ve explored
in the previous section, primarily the simple structure of the basic unit of RDF
graphs, the graph structure of RDF, and the global namespace provided by
the use of URIs.

Graphs do not have roots. Some other representations, for example, XML,
are tree based. In an XML document, the root element of the tree has a special
significance because all of the other elements are oriented with respect to the
document root. When trying to merge two trees, it can be difficult to determine
what the root node should be because the structure of that tree is so important
to the overall significance of the data. In an RDF graph, by contrast, no single
resource is of any inherent significance as compared to any other. That makes
it easier, because combining graphs is conceptually the same as placing them
next to one another.

The triple itself is a powerful tool for information integration. Triples are
just collections of URIs and literals, and each URI and literal inherently has
a global scope. The use of global names is critically important because it
means that triples can always be merged without name translations. Since
each constituent statement in a graph can be used without translation, entire
graphs can be transported and combined without any translation, which is a
great advantage when exchanging data.

Since RDF statements need no translation when moving from one system
to another, they are valid in any context. They are completely self-contained
assertions of information, and as such they are independent from one another.
This independence means that the order in which they are encountered is
irrelevant.
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Statements as Points
One way to think about RDF statements is as points in an abstract three-
dimensional space. Each axis would represent either the subject, predicate,
or object of a statement and would be populated with every possible URI
and literal, as shown in Figure 3-6. In this representation, a statement can be
depicted as a point defined by its subject, predicate, and object. Each point
represents a small atom of information, and each collection of these points
would represent an RDF graph.

Subjects

Objects

Predicates

<http://example.org/ont#d><http://example.org/ont#d> “f”

...

...

...

...

http://example.com/ont#d
http://example.com/ont#c
http://example.com/ont#b
http://example.com/ont#a

http://example.org/ont#d
http://example.org/ont#c
http://example.org/ont#b
http://example.org/ont#a

http://exam
ple.org/ont#a

http://exam
ple.org/ont#a

http://exam
ple.org/ont#a

http://exam
ple.org/ont#a 

http://exam
ple.org/ont#a

“f” 

“e” 

d” 

“c” 

“b” 

“a”

 http://example.org/ont#d
 http://example.org/ont#c
 http://example.org/ont#b
http://example.org/ont#a

Figure 3-6 RDF statements can be thought of as points in an IRI/literal namespace. This
helps illustrate some of their key characteristics.

Thinking about statements this way can illustrate some of their benefits for
data sharing:

Easy merging: Points in statement space are just like points in
any other n-dimensional space. Two sets of points can be over-
laid on top of each other to create a richer image, just as two
graphs of statements can be combined to form a richer graph.
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No order: Imagine an image made of statement-space points
coming into view. After all the points have been added and
the image is complete, there is no way to determine any
ordering as to when the different points were added.

No duplicates: If two statements have the same subject, predicate,
and object, they are identical. Therefore, after a statement has
been added to a collection, subsequent attempts to add that state-
ment will contribute no additional information to the overall collection
of assertions.

RDF Serializations
RDF graphs are powerful tools for representing information, but they are
abstract—good for human analysis but unsuitable for application exchange.
Serialization makes RDF practical for information exchange by providing a
way to convert between the abstract model and a concrete format, such as
a file or other byte stream. There are several equally expressive serialization
formats. Three of the most popular are RDF/XML, the Terse RDF Triple
Language (Turtle), and N-Triples. Turtle is the simplest and most concise;
therefore we use it throughout this book.

An exhaustive discussion of the nuances of the various RDF serializations is
outside of the scope of this chapter. There are many resources available on the
World Wide Web, and in particular at the W3C website. Nevertheless, a practi-
cal knowledge of RDF serializations is critical to an understanding of Semantic
Web technologies and how to use them effectively in real-world systems.

Since all RDF graphs have the same structure, each serialization format
must represent the same constructs: statements and the URIs and literals that
they comprise. Different serializations have special features to represent these
constructs more conveniently, but they all describe the same information.

RDF/XML

RDF/XML is an XML syntax for representing RDF triples, and it is the
only normative (standard) exchange syntax for RDF serialization. It must be
supported by all well-behaved Semantic Web applications. There are other
very common syntaxes, but to ensure that there is at least one syntax supported
by all RDF tools, RDF/XML was selected as the official syntax. Unfortunately,
even though there is a baseline format for serializing RDF, there is no canonical
representation for RDF/XML. This results in differences for the same graph
when serialized by different tools. It is very difficult, therefore, to compare
RDF/XML documents because two documents that look very different from
each other may in fact be the same. Some of the ways that RDF/XML
documents can differ from one another will be explained later in this section.
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This section’s discussion of RDF/XML will be based on the sample
RDF/XML graph shown in Listing 3-2.

<rdf:RDF

xmlns:people="http://semwebprogramming.net/people#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:foaf="http://xmlns.com/foaf/0.1/"

xmlns:ext="http://semwebprogramming.net/2008/06/ont/

foaf-extension#">

<!-- This is a comment. -->

<rdf:Description rdf:about="http://semwebprogramming.net/

people#Ryan">

<ext:worksWith

rdf:resource="http://semwebprogramming.net/people#John"/>

</rdf:Description>

<rdf:Description rdf:about="http://semwebprogramming.net/

people#Matt">

<foaf:knows

rdf:resource="http://semwebprogramming.net/people#John"/>

</rdf:Description>

<rdf:Description

rdf:about="http://semwebprogramming.net/people#Andrew">

<foaf:surname>Perez-Lopez</foaf:surname>

<foaf:knows

rdf:resource="http://semwebprogramming.net/people#Matt"/>

</rdf:Description>

</rdf:RDF>

Listing 3-2 The content from Listing 3-1, serialized as RDF/XML

Note the overall structure. All of the RDF content is contained within an
rdf:RDF tag, which contains a series of rdf:Description elements. Another
important item to note is the XML namespace declarations within the
opening rdf:RDF tag. Since RDF/XML is the normative exchange syn-
tax for RDF, the RDF document that defines RDF itself is formatted in
RDF/XML. That document can be found on the Web at http://www.w3.org/
1999/02/22-rdf-syntax-ns. By convention of the Semantic Web community,
that namespace is always abbreviated rdf, either by XML namespaces in
RDF/XML or by similar facilities offered by other serialization methods that
you’ll see later in the chapter.

Comments

In RDF/XML, comments are represented as in any other XML document.
They begin with the sequence <!-- , and end with the sequence -->. These
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comments are not part of the graph and are thus not ‘‘round-trippable’’ when
parsing and reserializing an RDF/XML document.

Statements

In an RDF/XML document, statements about resources are grouped into the
<rdf:Description> elements. Each description element has an rdf:about

attribute, which gives the subject of all of the statements within it. Each of
the subsequent elements within the description then defines the predicate
and object of a statement. The name of the internal tags represents the
predicate of a statement. The object is represented differently depending on
whether it is a resource or a literal. The following pseudo-RDF/XML illustrates
the general form.

<rdf:Description rdf:about="subject">

<predicate rdf:resource="object" />

<predicate>literal value</predicate>

</rdf:Description>

As an example, look at the following snippet from the RDF/XML document
shown previously.

<rdf:Description rdf:about="http://semwebprogramming.net/

people#Andrew">

<foaf:surname>Perez-Lopez</foaf:surname>

<foaf:knows rdf:resource="http://semwebprogramming.net/people#Matt"/>

</rdf:Description>

This excerpt expresses the graph shown in Figure 3-7.

People:Andrew

People:Matt

Perez-Lopezfoaf:surname

foaf:knows

Figure 3-7 Subsection of the graph from the preceding code

Resources

Resources are treated differently depending on whether they are the subject or
object of a statement. As we explained, subjects of statements are designated
with the rdf:about attribute of a rdf:Description tag. Objects of statements
appear in rdf:resource attributes of predicate tags.

RDF/XML is XML, so it uses standard XML namespace conventions to
abbreviate full URIs that appear as XML elements. XML entity declarations
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can be used to abbreviate full URIs in XML attribute values such as for
rdf:resource.

Literals

Literals appear as the text content of a predicate element. Literals can be
assigned a datatype using standard XML Schema Datatypes (XSD). In fact, any
URI can be used as a datatype for a literal, so you can create your own custom
types. String literals can optionally be marked by language. The example in
Listing 3-3 illustrates these features of RDF/XML:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:zoo="http://example.org/zoo/"

>

<rdf:Description rdf:about="http://example.org/zoo/Animal-123456">

<zoo:numberOfLegs

rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>4</zoo:numberOfLegs>

<zoo:scientificName>Canis lupus familiaris</

zoo:scientificName>

<zoo:commonName xml:lang="en">Dog</zoo:commonName>

<zoo:commonName xml:lang="es">Perro</zoo:commonName>

</rdf:Description>

</rdf:RDF>

Listing 3-3 Literal values in RDF/XML

You can use the xml:lang attribute to indicate the language of the text
in the associated string and use the rdf:datatype to indicate how to treat
literal values. In the previous listing, xml:lang is used to distinguish the
English from the Spanish version of the common name, and the rdf:datatype

is used to mark the value 4. In contrast to typing for literals, the set of
valid language tags is restricted. All language tags must be lowercased,
and the codes for each language are as defined by RFC 3066 (available at
http://www.isi.edu/in-notes/rfc3066.txt).

Shorthand and Special Features

RDF/XML allows a shorthand syntax for assigning types to resources:

<type rdf:about="resource" />

In a concrete example, consider this short RDF/XML document:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
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xmlns:foaf="http://xmlns.com/foaf/0.1/"

xml:base="http://semwebprogramming.net/people#"

>

<foaf:Person rdf:ID="#Ryan" />

<rdf:Description rdf:about="#Ryan">

<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person" />

</rdf:Description>

</rdf:RDF>

Even though that RDF/XML document contains a rdf:Description ele-
ment as well as a the <foaf:Person rdf:ID=’’#Ryan’’ /> statement, both are
equivalent. They are different expressions of the same statement, which is
that there is a resource called http://example.com/people#Ryan and that this
resource is of type foaf:Person.

T I P A great resource for working with RDF/XML documents is the World Wide
Web Consortium’s RDF Validator. It can be accessed at http://www.w3
.org/RDF/Validator/.

T I P The definitive site on the Web for information about RDF/XML is
http://www.w3.org/TR/rdf-syntax-grammar/.

Terse RDF Triple Language (Turtle)

The Terse RDF Triple Language, or Turtle, is another serialization syntax for
RDF. Compared with other serializations, Turtle is a more human-friendly and
readable syntax. Turtle is not an XML language—it was designed specifically
for RDF. Because it does not have to represent a graph as a tree, it can be more
concise and readable. Listing 3-4 shows the same graph used in Listing 3-2,
this time serialized into Turtle.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix people: <http://semwebprogramming.net/people/> .

@prefix ext: <http://semwebprogramming.net/2008/06/ont/foaf-

extension#> .

# This is a comment.

people:Ryan ext:worksWith people:John .

people:Matt foaf:knows people:John .

people:Andrew

foaf:knows people:Matt ;

foaf:surname "Perez-Lopez" .

Listing 3-4 The graph from Listing 3-2 serialized as Turtle
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Comments

Turtle uses the # character at the beginning of a line to indicate a comment.
Everything from the # symbol to the end of the line is ignored by the parser.

Statements

Turtle uses a simple format for each triple. The subject, predicate, and object
are written on a line, separated by white space, and the statement is terminated
with a period. Look at this line from the example:

people:Ryan ext:worksWith people:John .

In this line, people:Ryan is the subject, ext:worksWith is the predicate, and
people:John is the object, and the statement is terminated with a period.

Turtle provides a shorthand way of writing multiple statements about the
same subject. Look at the following snippet from Listing 3-4.

people:Andrew

foaf:knows people:Matt ;

foaf:surname "Perez-Lopez" .

In Turtle, the use of a semicolon indicates that the next two elements will
be the predicate and object of a statement that has the same subject as the
preceding statement. This bit of the document is equivalent to the following.

people:Andrew foaf:knows people:Matt .

people:Andrew foaf:surname "Perez-Lopez" .

The semicolon serves to reduce the effort required to write Turtle and to
make it more readable.

Similar shorthand can be used for when two statements have the same
subject and predicate.

people:Andrew foaf:knows people:Matt .

people:Andrew foaf:knows people:Ryan .

people:Andrew foaf:knows people:John .

A comma can be used to compact these three lines. When a comma appears
at the end of a statement, it indicates that the next element is the object of
a statement with the same subject and predicate as the previous statement.
So the three lines about people Andrew knows can be compressed into the
following Turtle.

people:Andrew foaf:knows people:Matt, people:Ryan, people:John .

Resources

In Turtle, resources are written in one of two ways. URIs appear either
fully qualified and enclosed in < and > or with a predefined prefix. The



80 Part II ■ Foundations of Semantic Web Programming

previous document shows examples of both forms. Consider the following
two lines:

@prefix ext: <http://semwebprogramming.net/2008/06/ont/foaf

extension#> .

people:Ryan ext:worksWith people:John .

The first line describes a prefix declaration, which informs the Turtle parser
that for this document, when ext: is encountered, it should be expanded to the
full URI associated with the prefix. The prefix declaration also demonstrates
how fully qualified URIs are expressed in Turtle. The second line has an
example of using the prefix. That line could just as validly have been written
as follows:

people:Ryan <http://semwebprogramming.net/2008/06/ont/foaf

extension#worksWith> people:John .

Prefixes greatly reduce the clutter of the document and make Turtle much
easier for people to read and write.

Literals

Literal values in Turtle are enclosed in double quotes, as in the previous
example. Strings that contain double quotes can escape them with the "\n"
character sequence. Strings that contain line breaks should be enclosed with
three sets of double quotes, as in the following example:

@prefix ex: <http://example.com/> .

ex:Poem ex:hasText """Roses are red,

Violets are \"blue\",
Sugar is sweet,

And so are you.""" .

Turtle can also encode literals of specific XSD datatypes or languages, just
like RDF/XML. Listing 3-5 shows the dog graph from Listing 3-3 expressed in
Turtle:

@prefix zoo: <http://example.org/zoo/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

zoo:Animal-123456

zoo:commonName "Dog"@en , "Perro"@es ;

zoo:numberOfLegs

"4"^^<http://www.w3.org/2001/XMLSchema#int> ;

zoo:scientificName

"Canis lupus familiaris" .

Listing 3-5 Literal values in Turtle
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Datatypes are indicated by appending ^^<datatype URI> to the end of the
literal. Specific languages are indicated by appending @language to the end of
a literal.

Shorthand and Special Features

Similar to RDF/XML, Turtle provides convenient shorthand for designating
the type of an individual resource. In Turtle, the letter a is used instead of the
more cumbersome rdf:type. As with other Turtle-specific features, this serves
to make the document much easier for humans to read and write.

In the following document, both lines after the prefix declarations are
equivalent:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix : <http://semwebprogramming.net/people#> .

:Ryan a foaf:Person .

:Ryan rdf:type foaf:Person .

T I P The authoritative site on the Web for information about Turtle is
http://www.w3.org/TeamSubmission/turtle/.

N-Triples

N-Triples is a simplified version of Turtle. It uses the same syntax for comments,
URIs, and literal values but imposes some simplifying restrictions. N-Triples
does not support the @prefix directive or the ; or , shorthand for statements.
A statement in N-Triples is represented by a single line containing the subject,
predicate, and object. N-Triples’s simplicity can make it an attractive choice
for serializing RDF, particularly in applications with streaming data.

For comparison, the example document from the other two serializations
is repeated here in N-Triples. Because N-Triples is a line-based format, a
single statement cannot span multiple lines. Strictly for purposes of demon-
stration, therefore, the serialization of the graph will, in this case, use a slightly
different set of namespaces in order to fit it on the printed page. In Listing
3-6, the URI that in previous examples was http://semwebprogramming.

net/people# is replaced with a shorter URI, urn:sw:. The FOAF extension
URI of http://semwebprogramming.net/2008/06/ont/foaf-extension# is
replaced with urn:swprg:foaf:, and the FOAF URI itself, http://xmlns

.com/foaf/0.1/, is replaced with a shortened, print-friendly version,
urn:foaf:.
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<urn:sw:Ryan> <urn:swprg:foaf:worksWith> <urn:sw:John> .

<urn:sw:Matt> <urn:foaf:knows> <urn:sw:John> .

<urn:sw:Andrew> <urn:foaf:surname> “Perez-Lopez“ .

<urn:sw:Andrew> <urn:foaf:knows> <urn:sw:Matt> .

Listing 3-6 Listing 3-2 serialized as N-Triples

T I P More information about N-Triples can be found on the Web at
http://www.w3.org/TR/rdf-testcases/#ntriples

Quick Hack
It is very important for you to know about different types of RDF serializations,
particularly since you will almost certainly need to write some by hand when
you build your Semantic Web system. A few short minutes with Java and the
Jena API yields a little application that can easily convert among RDF/XML,
N3, and N-Triples. The code in Listing 3-7 uses Jena to read in a file in a
specified RDF format (RDF/XML, N3, or N-Triples) and then writes out the
same graph to another file in a different format:

package net.semwebprogramming.chapter3.RDFSerializer;

import java.io.*;

import com.hp.hpl.jena.rdf.model.Model;

import com.hp.hpl.jena.rdf.model.ModelFactory;

public class RDFSerializer {

public static void main(String[] args) {

String inputFileName = null;

String outputFileName = null;

String inputFileFormat = null;

String outputFileFormat = null;

FileOutputStream outputStream = null;

FileInputStream inputStream = null;

if(args.length != 4) {

System.err.println("Usage: java RDFSerializer <input file> " +

"<output file> <input format> <output format>");

System.err.println("Valid format strings include: RDF/XML, " +

"N3, and N-TRIPLES");

return;

}

(continued)
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inputFileName = args[0];

outputFileName = args[1];

inputFileFormat = args[2];

outputFileFormat = args[3];

try {

inputStream = new FileInputStream(inputFileName);

outputStream = new FileOutputStream(outputFileName);

} catch (FileNotFoundException e) {

System.err.println("’" + outputFileName + "' is an invalid " +

"file name.");

return;

}

Model rdfModel = ModelFactory.createDefaultModel();

rdfModel.read(inputStream, null, inputFileFormat);

rdfModel.write(outputStream, outputFileFormat);

try {

outputStream.close();

} catch (IOException e) {

System.err.println("Error writing to file.");

return;

}

}

}

Listing 3-7 Program for reading and writing RDF serialization formats using Jena

Looking at the code, the majority of it just unpacks the command-line
arguments, initializes file I/O, and handles exceptions that might be thrown.
Only three lines perform any RDF-specific operations.

Model rdfModel = ModelFactory.createDefaultModel();

rdfModel.read(inputStream, null, inputFileFormat);

rdfModel.write(outputStream, outputFileFormat);

The first line instructs Jena to create an empty RDF graph. The second line
populates the graph with the triples from the stream, using a parser that
is capable of reading the given RDF format. The null parameter passed to
the read method instructs Jena to automatically convert any relative URIs
that it might encounter to absolute URIs that it maintains internally. Finally,
the third line serializes the RDF graph to the given stream in the specified
output format.
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N O T E This example results in a program that behaves just like a program called
jena.rdfcopy that is included with the Jena distribution. It is a very useful
utility when working with RDF documents in different formats. If you choose not to
implement this Quick Hack, you can use jena.rdfcopy instead.

More RDF
Up to this point, this chapter has focused on the main concepts behind RDF,
the information model for the Semantic Web, and some of the most important
characteristics of that model. Nevertheless, there are a few extra ideas that
need to be explained in order for you to understand all of RDF.

Blank Nodes

An RDF statement contains a subject, predicate, and object, where the subject
and predicate are URIs in a global namespace and the object is either a URI or
a literal. There is a special case of this rule. Not all resources are designated as
URIs in the global namespace. Some resources, called blank nodes, conceptually
have no names at all.

Blank nodes are used to represent existential variables. A good example of an
existential variable that illustrates some of the special characteristics of blank
nodes is the old adage, ‘‘There’s someone special out there for everyone.’’ In a
more logic-friendly rephrasing, the saying is, ‘‘It is true that for every person,
there exists a person who is a good match for the first person.’’ In this case,
the good match is a person who is an existential variable. What’s important is
that this other person cannot have a name because he or she can be identified
only with respect to the adage. You can talk about the person, but when you
do so, you must refer to him or her as ‘‘your special person’’ to tie the thing to
the notional person described in the saying. You can say, ‘‘My special person
will be nice,’’ or ‘‘good looking,’’ or ‘‘tall,’’ or what have you, but it does
not make sense to separate the subject of these statements from the notion of
‘‘your special person.’’ This is because such an existential variable does not
truly describe any single individual entity, but rather an abstract template of
an entity.

Similarly, in RDF serializations, blank nodes can be given names, but these
names are unique only within the context of the particular RDF document,
and blank nodes can never be referred to outside the current document. This
notion of a blank node seems like a subtle and abstract concept. How are blank
nodes really used in practice? Why would it be desirable to even have blank
nodes, and what are the implications of their existence on the Semantic Web
information model?
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The simple structure of RDF is a great advantage for information sharing,
but simplicity comes at a price. RDF supports only binary predicates. That is, a
statement expresses a relationship between two resources and never more than
that. Say, for instance, that you wanted to express in RDF the idea of a person
living in a city and state. There is no single statement that can connect a resource
to both a city and a state, because RDF allows only binary predicates. You
could have two predicates like residesInCity and residesInState, but that
solution falls down when a person has two or more residences. At that point,
because the city and state for both residences are associated with the person,
it becomes impossible to determine which city belongs with which state.

The proper way to solve this problem is to create a resource that represents
a residence, associate the residence with the person, and then link the city and
state with the residence. Without blank nodes, however, RDF requires that
this intermediary residence node have a globally resolvable name even when,
as in this case, it doesn’t make sense to provide such a name. Requiring URIs
for such intermediary nodes is clumsy and counterintuitive.

More important, such a requirement could hinder data sharing. Consider
the following two RDF documents shown in Listing 3-8, written with an RDF
specification that does not permit blank nodes:

# First document, created by an organization that owns example.org

@prefix ex: <http://example.org/residences#> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence ex:SomeResidence .

ex:SomeResidence sw:isInCity "Arlington" ;

sw:isInState "VA" .

#Second document, created by an organization that owns example.com

@prefix ex: <http://example.com/bob-info#> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence ex:SomeResidence .

ex:SomeResidence sw:isInCity "Arlington" ;

sw:isInState "VA" .

Listing 3-8 RDF if blank nodes were not allowed

In this code, the only difference between the first and the second documents is
the prefix defined for ex:. The term SomeResidence is used by both documents
as a placeholder for some residence in Arlington. In this case, because we are
forcing every resource to have a URI, both documents are using a global name,
but they naturally are placing that name within a namespace that they control.
When the two graphs are combined, however, it will appear as though Bob
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has two residences. Nothing in RDF precludes multiple URIs being used to
describe the same resource, so nothing about that combination is technically
wrong, but it is cumbersome. Since both graphs really don’t intend to say
anything about Bob’s residence situation other than that one in Arlington, VA,
exists, they would be better served using a blank node.

In Turtle, there is a special prefix reserved for blank nodes. A blank node may
be given a node ID that starts with the : prefix. For example, :blanknode,
:placeholder, :p3, :rabbit. All are valid blank node IDs. Each node ID is

unique only within the scope of a single RDF document.
Using blank nodes, the documents from Listing 3-8 can be rewritten as

shown in Listing 3-9.

# First document, using the example.org namespace

@prefix ex: <http://example.org/residences> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence :residence .

:residence sw:isInCity ""Arlington" ;

sw:isInState "VA" .

#Second document, using the example.com namespace

@prefix ex: <http://example.com/bob-info> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence :bobshouse .

:bobshouse sw:isInCity "Arlington" ;

sw:isInState "VA" .

Listing 3-9 The documents from Listing 3-8 presented with blank nodes

When the two documents are combined, the result will be something
like this:

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence :node .

:node sw:isInCity "Arlington" ;

sw:isInState "VA" .

Turtle also provides convenient shorthand for referring to blank nodes. You
can use the [ and ] characters to define a blank node without providing a
blank node ID. All of the statements within the [ and ] have the blank node as
the subject. Using this shorthand, the two previous graphs would be written
as shown in Listing 3-10:
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# First document, using the example.org namespace

@prefix ex: <http://example.org/residences> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence [

sw:isInCity "Arlington" ;

sw:isInState "VA"

] .

#Second document, using the example.com namespace

@prefix ex: <http://example.com/bob-info> .

@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence [

sw:isInCity "Arlington" ;

sw:isInState "VA"

].

Listing 3-10 Blank nodes represented using the Turtle shorthand

Note that the node IDs in each document that used the blank nodes were
different. Because conceptually those nodes don’t have a name, the string
value that appears in the serialized RDF version can be different every time.

The advantages of blank nodes come with some considerations. Blank
nodes, as anonymous resources, cannot be referred to from outside their
defining document. This can present significant challenges when trying to
create links between data, a crucial goal for the Semantic Web.

Even if linking data is not an explicit concern, blank nodes can be a problem
when using queries to access RDF information. These difficulties will become
clearer after the explanation of querying that comes in Chapter 6, ‘‘Discovering
Information.’’ In general terms, the problem is that if a blank node is included
in a query result, the node ID given to the node in the result is valid only for
that query result. Therefore, subsequent queries cannot refer to the blank node
directly. If you plan to use queries in your system, you may choose not to use
blank nodes to represent any information you care to retrieve later.

Another problem with the limited scope of blank nodes is that it complicates
merging RDF graphs. In particular, the problem arises from possible node ID
conflicts. When merging graphs, software tools must ensure that each distinct
blank node has a node ID that is unique within the scope of the combined
document. Because RDF does not impose any ordering on statements, it can be
difficult to assign these node IDs properly. This issue particularly complicates
processing streams of RDF statements.
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Reification

It is possible to make a statement about anything in RDF, even other
statements—a statement about a statement. This is an extremely valuable
tool for practical Semantic Web systems. It can be employed to qualify or
annotate information in useful ways. One application might be to tag informa-
tion with provenance information or with a timestamp of when it was added
to a system. You might use this to group statements together or in a closed
system to indicate the validity of statements.

RDF statements must always have a resource as a subject, so in order to make
a statement about a statement, a resource must be used to represent an entire
statement. RDF provides a special type called rdf:Statement to designate
those resources that represent statements. The rdf:subject, rdf:predicate,
and rdf:object predicates are used to define the statement that is being
annotated. For instance, suppose you wanted to express the idea ‘‘Matt says
that John knows Ryan.’’ You could use reification like so:

@prefix :foaf <http://xmlns.com/foaf/0.1/> .

:Matt :asserts :stmt .

:stmt a rdf:Statement ;

rdf:subject :John ;

rdf:predicate foaf:knows ;

rdf:object :Ryan .

This example uses a blank node to represent the statement resource, but a
full URI could be used as well.

RDF Organizational Constructs

RDF provides several constructs for grouping information. Typically, complex
information is not stored in RDF alone; richer semantic languages build on
the RDF data model. Nevertheless, it is important to recognize how these RDF
constructs work and how they are used.

RDF Containers

RDF defines three types of resources that are understood to be collections
of resources. The first, rdf:Bag, is used to represent an unordered grouping
of resources, while rdf:Seq can maintain an ordered collection. The final
container type, rdf:Alt, is an unordered collection like rdf:Bag, but it is
intended for a particular purpose. The rdf:Alt container should be used when
describing a set of equivalent alternatives.

In order to associate resource with these containers, RDF defines a special
set of predicates, namely, rdf: 1, rdf: 2, rdf 3, . . . , rdf n. These predicates
associate a container as the subject with a resource it contains as the object.
Even though rdf:Bag, rdf:Seq and rdf:Alt all use the rdf: n predicates to
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establish the containment relationship with other resources, the value of n can
be ignored except in the case of an rdf:Seq type container. The example in
Listing 3-11 illustrates the different types of containers:

@prefix ex: <http://example.com/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix people: <http://www.semwebprogramming.net/people/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

ex:Authors a rdf:Bag ;

rdf: 1 people:Ryan ;

rdf: 2 people:Matt ;

rdf: 3 people:Andrew ;

rdf: 4 people:John .

ex:Chapters a rdf:Seq ;

rdf: 1 ex:ChapterOne ;

rdf: 2 ex:ChapterTwo ;

rdf: 3 ex:ChapterThree ;

rdf: 4 ex:ChapterFour ;

rdf: 5 ex:ChapterFive .

ex:Homepages a rdf:Alt ;

rdf: 1 <http://www.semwebprogramming.net> ;

rdf: 2 <http://www.semwebprogramming.org> .

ex:Book ex:writtenBy ex:Authors .

ex:Book ex:hasChapters ex:Chapters .

ex:Book foaf:homepage ex:Homepages .

Listing 3-11 RDF Containers – rdf:Bag, rdf:Seq, and rdf:Alt

In this example, there are three containers, one for a book’s authors, one
for its chapters, and one for its home-page URLs. The authors are stored in
an unordered collection, because conceptually there is no relevance to their
order. With the collection of chapters, on the other hand, order could be
very important. Finally, with the collection of home pages, each is an equally
valid representation for the object of the statement describing the book’s
foaf:homepage.

Numbering each one of the elements in a collection this way can be very
tedious, particularly in the case of rdf:Seq. Inserting an element into an
ordered collection might require renaming every subsequent element. For
this reason, RDF serializations use the rdf:li predicate instead of the rdf n

predicates. Conceptually, each rdf:li predicate is in fact one of the rdf n

predicates, but when actually writing RDF, it is much more convenient to use
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the rdf:li predicate instead. This is also one of the only situations where the
order of statements is relevant. Because a sequence represents an ordered set
of resources, if you use the rdf:li shorthand, then the first resource of the
group will become rdf: 1, the second rdf: 2, and so on.

RDF Lists

RDF lists help to group collections of resources in such a way that they will not
be altered even when RDF graphs are merged. Consider the following graph:

@prefix ex: <http://example.com/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix people: <http://www.semwebprogramming.net/people/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

ex:Authors a rdf:Bag ;

rdf: 1 people:Ryan ;

rdf: 2 people:Matt ;

rdf: 3 people:Andrew ;

rdf: 4 people:John .

ex:Book ex:writtenBy ex:Authors .

If it were merged with this graph

@prefix ex: <http://example.com/> .

ex:Authors rdf: 5 ex:SomeOtherPersonThatIsntAnAuthor

then the resulting graph would indicate an extra author, which might not be
the desired effect. In order to express a collection that cannot be modified in
this way, RDF provides the rdf:List construct. Listing 3-12 shows how an
rdf:List could represent the author information in a more closed way:

@prefix ex: <http://example.com/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix people: <http://www.semwebprogramming.net/people/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

ex:Authors a rdf:List ;

rdf:first people:Ryan ;

rdf:rest :r1 .

:r1 a rdf:List ;

rdf:first people:Matt ;

rdf:rest :r2 .

:r2 a rdf:List ;

rdf:first people:Andrew ;

(continued)
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rdf:rest :r3 .

:r3 a rdf:List ;

rdf:first people:John ;

rdf:rest rdf:nil .

ex:Book ex:writtenBy ex:Authors .

Listing 3-12 A List serialized in Turtle

In this example, lists are constructed with two predicates. The rdf:first

predicate refers to the first element of a list, while the rdf:rest predicate refers
to another list that has as its rdf:first resource the second resource of the
overall list. This process continues recursively until the rdf:rest of the list is
rdf:nil. This construct allows for collections where each element explicitly
refers to the subsequent element. This prevents the order or contents from
being altered as new RDF graphs are combined.

This can be a valuable tool, but it is an extremely awkward and unreadable
way to represent RDF lists. Thankfully, Turtle provides very concise shorthand
to represent RDF lists. The list from Listing 3-12 can be equally represented by
the RDF document that follows:

@prefix ex: <http://example.com/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix people: <http://www.semwebprogramming.net/people/> .

ex:Book

ex:writtenBy (people:Ryan people:Matt people:Andrew people:John) .

In Turtle, lists can be written as parentheses containing white space–
separated resources. This makes for much more readable RDF documents
than the original syntax. The shorthand forms for containers and lists Turtle
provides not only improve readability and help to make documents shorter,
but they also greatly reduce the likelihood of human error. As you develop
your Semantic Web applications and need to update RDF files, the verbose
syntax of containers and lists make it easy to zig when you should zag, as
it were. It is very easy to introduce a subtle numbering error or to forget a
rdf:rest statement when updating in a list, particularly when the list is large,
and it can be very difficult to figure out where the error occurs.

Summary

Over the course of this chapter, you’ve learned about the information-sharing
problem in abstract terms and about how the Semantic Web model, RDF,
approaches that problem. You’ve seen some of the strengths and weaknesses
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of RDF for data sharing as compared to other information models, and you’ve
learned how information can be represented in RDF. You’ve seen examples of
a few RDF serializations and written a short program to convert among the
different formats. You’ve learned about the importance of integrated metadata
for information portability and seen how RDF’s flexibility allows it to express
arbitrary statements about anything, even concepts.

In Chapter 4, ‘‘Incorporating Semantics,’’ you’ll see how to use RDF to
describe groups of resources and the relationships between those groups. In
Chapter 5, ‘‘Modeling Knowledge in the Real World,’’ you’ll learn how to
apply the principles from this group of chapters to real problems, and you’ll
also be introduced to inference, one of the most powerful features of the
Semantic Web.



C H A P T E R

4

Incorporating Semantics
’’Whatever we learn has a purpose and whatever we do affects everything and

everyone else, if even in the tiniest way. Why, when a housefly flaps his wings, a
breeze goes round the world; when a speck of dust falls to the ground, the entire

planet weighs a little more; and when you stamp your foot, the earth moves slightly
off its course . . . And it’s much the same thing with knowledge, for whenever you

learn something new, the whole world becomes that much richer.’’

—Norton Juster, The Phantom Tollbooth

In the previous chapter, you learned about the information model of the
Semantic Web: the Resource Description Framework, or RDF. RDF provides
a virtually limitless model for describing information. You can say anything
you want about anything you want. The drawback of all the flexibility and
expressiveness of RDF is that used alone, it lacks explicit support for specifying
the meaning, or semantics, behind the descriptions.

Fortunately, the original vision for the Semantic Web considered the fact that
developers and users need some way of specifying rich semantic descriptions
of concepts and relationships to exchange information effectively. RDF Schema
(RDFS) and the OWL Web Ontology Language provide these capabilities.

The purpose of this chapter is to provide you with the knowledge necessary
to add semantics to your web of RDF data. Semantics are the key to incorpo-
rating domain knowledge into RDF data, making the descriptions richer and
more meaningful.

The objectives of this chapter are:

to understand the role of semantics in information modeling and the
Semantic Web

to introduce the elements of the OWL Web Ontology Language and how
each is used to add meaning to information in the Semantic Web

93
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This chapter is meant to be a primer for semantics in the Semantic Web and
should serve as an excellent reference for the OWL Web Ontology Language.
Chapter 5, ‘‘Modeling Knowledge in the Real World,’’ builds on the contents
of this chapter by discussing ontology development and management and the
role of inference in the Semantic Web through an in-depth, hands-on example.

Semantics on the Web

Before diving head first into learning the technologies that will allow you to
incorporate semantics into your web of data, it’s important to understand why
semantics are needed and how the various technologies of the Semantic Web fit
together. The following sections explore the motivations behind incorporating
semantics into the RDF model and how RDFS and OWL combine to provide
this capability.

You’ll recall from Chapter 3, ‘‘Modeling Information,’’ that communication
involves semantics and syntax. Semantics refers to the meaning or concepts of
the information that’s being shared. Syntax refers to the means by which the
information is transferred. Consider a communication between a soccer player
who has just scored a goal and her coach. The coach wishes to congratulate
the player, so he gives her a high five and shouts, ‘‘Great shot!’’ The coach
is expressing approval and congratulations. The meaning of these concepts
is the semantics of the communication. The high five and verbal adulation
are transfer mechanisms for communicating the semantics. They are the
syntax of the communication. The player understands the communication by
interpreting the syntax and its associated semantics.

Adding semantics to a web of data requires the ability to define concepts
and relationships precisely in a manner that transcends syntax. Leveraging
this capability is what the Semantic Web is all about, and this chapter takes the
first step toward understanding and applying semantics to any web of data,
even the World Wide Web (WWW).

N O T E You can skip straight to the ‘‘Introduction to Ontologies’’ section if you
are already familiar with the foundations of the Semantic Web and you want to
begin learning about the OWL Web Ontology Language and ontologies.

Motivating Factors
There are many motivating factors driving Semantic Web development. These
include but are not limited to: making web-based information machine under-
standable, providing a rich semantic model for expressing domain knowledge,
and enabling cross-domain information exchange. The next couple of subsec-
tions present two specific use cases to help you better understand the goals of
the Semantic Web.



Chapter 4 ■ Incorporating Semantics 95

Understanding the World Wide Web

The World Wide Web is one of the largest public repositories of information
in the world. At the time this book was written, it was estimated that there
are on the order of tens of billions of web pages (www.worldwidewebsize.com).
That is an extraordinary amount of information. Unfortunately, most of that
information is inaccessible to computers because it is designed for human
consumption. Machines were designed to relay information, not to be aware
of the concepts and relationships contained within it. This makes it very
difficult for applications to utilize the WWW as an information source in any
kind of automated manner.

It’s not immediately apparent that there are limitations with the current
design of the WWW. When you need some piece of information, it’s relatively
easy to find it. You go to a search engine like Google or Yahoo, type in a search
string, and then you review the results, refining your search as you go, until
you find the page you’re looking for (as depicted in Figure 4-1).

Figure 4-1 Searching on the Web involves an iterative process of refining search terms
based on the set of documents returned. This process relies heavily on the user’s ability to
quickly interpret the results

This process works as well as it does because the user is in the loop. You,
the user, do the hard part. Yes, indexing the contents of pages and ranking
their relevance to search terms are hard, but these tasks require computers to
do what they’re really good at: calculating, indexing, and sorting. The search
engine is really only performing a syntax-based pattern match between your
query and the contents of documents on the Internet, with some added features
for improving performance and accuracy.
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Unfortunately, the search engine isn’t aware of the semantics of the search
terms, nor does it understand the meaning of the information contained in
each web page; therefore, it is unable to solve, or provide an answer, to the
query. All it can do is to try to help you, the user, answer it with information
from Web documents that contain terms similar to your search. Try one of the
following Web searches and observe the results:

Which 2005 model year passenger car has the best fuel economy?

What are the 10 largest lakes in the United States of America?

Were any American presidents born in Maryland?

For each of the listed searches, the search engine will find Web pages that
are using the same language or asking the same question as your search. The
search engine is helping you by pointing you to documents that are relevant
to your question, but it can’t answer your question directly because it doesn’t
understand it. Moreover, even if it could understand your question, it doesn’t
understand all the web pages that are on the WWW, so it has no ability
to search and identify information that is relevant to the semantics of your
question.

The search engine simply applies a mathematical model to the content of
each web page and the words in your query. Despite the lack of semantics,
search engines work remarkably well for a majority of use cases because of
how easy it is for humans to review a document and determine its relevance.
Automatically performing this ability using a computer involves natural
language processing, which is a nontrivial challenge.

It is a bit unfair to fault search engines for not being able to answer the kinds
of questions we’ve discussed. After all, that’s not what they were designed
to do. They were designed to retrieve the documents on the Web that are
syntactically similar to your search terms, and they do that remarkably well.
The real point of this example is to raise the question: Why aren’t there popular
search engines that search the Web using semantics? One of the biggest reasons
is what we mentioned before. Most of the information on the Web is in purely
human-readable and human-understandable form.

While improving search engine performance is not the primary goal of
adding semantics to the Web, it does serve as an illustrative example of why
automated information processing systems need semantics. If each web page
were annotated with semantic metadata, it would make the hard part of the
problem much easier for computers to deal with. Search engines could be
aware of what information is out there and how to interpret queries and
apply them to the available information to produce a real answer, rather than
simply providing a pointer to relevant resources. This type of web forms a
vast knowledgebase of information from which any program or anyone can
extract information more easily.
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Knowledge Domain Integration

Forming and capturing semantics at the WWW level can be a bit overwhelm-
ing. There is already so much data out there that it’s hard to imagine annotating
all of it with semantic metadata. Moreover, there is an ugly chicken-and-egg
problem. It is hard to justify the development of Semantic Web applications
without a Semantic Web, but there is little motivation to build the Semantic
Web without having applications that actually use it. A more immediately tan-
gible and micro-level motivation for semantics involves information sharing
between specific knowledge domains.

Information sharing is fundamental to the Semantic Web. It’s not only
about transferring a stream of bits from one system to another but also about
conveying a set of concepts between systems or across knowledge domains.
When information is semantically (rather than syntactically) described, it can
be shared across domain boundaries by defining the concepts of the foreign
domain in terms of the concepts of the local domain. This is similar to how
we learn new concepts. We describe them and understand them in terms
of the concepts we’re familiar with. Once these relationships between the
concepts of each domain are established, anyone can take advantage of them.
Figure 4-2 illustrates this concept by presenting very simple definitions of the
Semantic Web and the World Wide Web and drawing relationships between
the concepts of each. On the left side of the figure is a very high-level description
of the WWW. On the right side is the same for the Semantic Web. The circles
in the figure represent concepts, while the arrows represent relationships
between concepts. The arrows that are dashed connect the concept of WWW
with the concept of Semantic Web.

World Wide
Web

Documents

URLs

URIs

Semantic
Web

Ontologies

Concepts and
Relationships OWL

extends

are

contains contains

connected
by

define use
language

specific type

of identified
by

Figure 4-2 Unfamiliar information can become more understandable when you see it
related to concepts you know
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There is nothing groundbreaking about sharing information between
groups that use different formats, languages, and schemata; however, there
is a critical difference between traditional approaches and the Semantic Web
approach. Take a relational database as an example. To share information
between two communities that each use a different schema for its database,
sharing would occur through a process of translation. A dump of data would
be mapped and translated from one schema to the other. The key here
is that the data is fundamentally changing. The old information that was
captured in the original schema is gone, and it has been replaced with new
information according to the destination schema. Any data that cannot be
directly translated will be lost, and any difference in how general or specific
the different schemata are will be manifest in the final product.

The Semantic Web approach to information sharing involves description.
Concepts from the source knowledge domain are described in terms of the
concepts of the destination knowledge domain. This is a purely additive
process. In the end, the data has meaning in both domains, and the full context
and fidelity of the data are maintained because no information has been lost
through a process of translation. Even if an application does not directly
understand the foreign concepts, it can use the relationships between the local
and foreign concepts as a basis for interpretation.

Expressing Semantics in RDF
The Resource Description Framework (RDF) provides a way to model informa-
tion but does not provide a way of specifying what that information means—its
semantics. An RDF graph alone can only be interpreted as just that: a graph.
The only meaning that is apparent is based solely on your ability to recognize
and interpret the URIs, literals, and general structure of the graph. Despite
the fact that the RDF graph in Figure 4-3 contains no explicit semantics, it is
apparent that it is describing a few people who know each other.

Ryan

Ryan Blace

John

Matt

worksWith

hasName knows

Figure 4-3 The meaning of this RDF graph is apparent because the resources and properties
are recognizable. Despite this, there is no meaning in this graph beyond its structure.
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It becomes much harder to make sense of what is being expressed in RDF
if the contents of the graph are in a different language or are unrecogniz-
able. Consider the RDF graph in Figure 4-4. The same exact information is
represented, but the URIs are no longer recognizable. Can you still tell what
the graph represents? To add meaning to RDF graphs properly, you need
some means of defining a vocabulary of predefined terms with accompanying
semantics for describing the information.

Resource7

Ryan Blace

Resource5

Resource1

property1

property4 property3

Figure 4-4 This RDF graph is the same as in Figure 4-3, only this time the resources and
properties aren’t human-recognizable.

Vocabularies, Taxonomies, and Ontologies

Vocabularies, taxonomies, and ontologies are all related. Each contains a set
of defined terms, and each is critical to the ability to express the meaning
of information. Their differences lie in their expressiveness, or how much
meaning each attaches to the terms that it describes:

A vocabulary is a collection of unambiguously defined terms used in
communication. Vocabulary terms should not be redundant without
explicit identification of the redundancy. In addition, vocabulary
terms are expected to have consistent meaning in all contexts.

A taxonomy is a vocabulary in which terms are organized in a
hierarchical manner. Each term may share a parent-child relation-
ship with one or more other elements in the taxonomy. One of
the most common parent-child relationships used in taxonomies
is that of specialization and generalization, where one term is a
more-specific or less-specific form of another term. The parent-child
relationships can be many-to-many; however, many taxonomies
adopt the restriction that each element can have only one parent.
In this case, the taxonomy is a tree or collection of trees (forest).
Figure 4-5 illustrates the hierarchical structure of a taxonomy.
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An ontology uses a predefined, reserved vocabulary of terms to
define concepts and the relationships between them for a specific
area of interest, or domain. Ontology can actually refer to either a
vocabulary, a taxonomy, or something more. Typically the term
refers to a rich, formal logic-based model for describing a knowl-
edge domain. Using ontologies, you can express the semantics
behind vocabulary terms, their interactions, and context of use.

Vocabulary Taxonomy

Animal
Canine

Mammal

Mammal ReptileAnimal Feline

Feline

Human
Reptile

Human Canine

Figure 4-5 Vocabularies are simple collections of well-defined terms. Taxonomies extend
vocabularies by adding hierarchical relationships between terms.

The Semantic Web uses a combination of a schema language and an
ontology language to provide the capabilities of vocabularies, taxonomies, and
ontologies. RDF Schema (RDFS) provides a specific vocabulary for RDF that
can be used to define taxonomies of classes and properties and simple domain
and range specifications for properties. The OWL Web Ontology Language
provides an expressive language for defining ontologies that capture the
semantics of domain knowledge.

A Vocabulary Language for RDF

As the previous chapter explains, RDF allows you to make statements about
resources that are identified using URIs. These statements take the form of
triples that associate a resource (subject) with a value (object) using a property
(predicate). RDF provides an extremely powerful and expressive model for
capturing information; however, RDF alone provides no way to capture the
meaning of the information it is modeling.

The first step toward expressing the meaning of RDF information is to
develop a common vocabulary, or collection of resources, that has a well-
understood meaning and is used in a consistent manner to describe other
resources. RDF Schema does not attempt to define these shared vocabularies;
rather, it provides a language with which you can develop your own shared
vocabularies. The namespaces that are used by RDFS are listed in Table 4-1
with the prefixes rdf, rdfs, and xsd.
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RDFS vocabularies describe the classes of resources and properties being
used in an RDF model. Using RDFS, you can arrange classes and properties
in generalization/specialization hierarchies, define domain and range expec-
tations for properties, assert class membership, and specify and interpret
datatypes. All resources in RDFS are considered members of the class of all
RDF resources and as such are all instances. You can further describe those
instances by making statements about them using properties or by explicitly
making them members of other classes defined in an RDFS vocabulary.

RDFS is one of the fundamental building blocks of ontologies in the Semantic
Web and is the first step toward incorporating semantics into RDF. The specific
constructs of RDFS will be covered as part of the larger discussion of ontologies
in this chapter.

An Ontology Language for the Web

The OWL Web Ontology Language extends the RDFS vocabulary with addi-
tional resources that can be used to build more expressive ontologies for the
Web. OWL introduces added restrictions regarding the structure and contents
of RDF documents in order to make processing and reasoning more compu-
tationally decidable. OWL uses the RDF and RDFS, XML Schema datatypes,
and OWL namespaces. The OWL vocabulary itself is defined in the namespace
http://www.w3.org/2002/07/owl# and is commonly referred to by the prefix
owl. OWL 2 extends the original OWL vocabulary and reuses the same names-
pace. The full set of namespaces used in OWL and their associated prefixes are
listed in Table 4-1.

Table 4-1 Namespaces Used in the OWL Web Ontology Language

NAMESPACE PREFIX

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf

http://www.w3.org/2000/01/rdf-schema# rdfs

http://www.w3.org/2001/XMLSchema# xsd

http://www.w3.org/2002/07/owl# owl

These prefixes will be used in all examples without necessarily being defined explicitly.

The original OWL documents became a World Wide Web Consortium
(W3C) recommendation in February 2004, after almost three years of academic
and industry development. At the time of this writing, development is under-
way on the second version of OWL, with completion expected in mid-2009.
OWL 2 is a backwards-compatible extension of OWL that adds a set of
new capabilities motivated by feedback from the users of the original version.
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In this book, all discussion regarding OWL is oriented toward OWL 2; however,
OWL 2–specific topics and capabilities will be explicitly identified as such.

When working with ontologies, you can choose which elements of RDFS
and OWL you want to use. It is very common to build an OWL ontology
using only a small subset of the OWL language elements (if any at all). This
is perfectly acceptable. The language was developed to be flexible, and it
should be used in the most reasonable and pragmatic manner possible. To
help users make these decisions, there are a number of predefined subsets, or
profiles, of OWL that provide varying levels of expressivity with tradeoffs in
computational complexity.

The set of valid OWL documents is a subset of the set of valid RDFS
documents. In other words, OWL introduces extra vocabulary and structure
assumptions that are not explicitly present in RDFS. Regardless of the subset of
language elements you use in your system, you should base your knowledge
model on OWL. If you instead build a system around RDFS and later decide
to switch to OWL, you may be in for a headache. Tools that are built for
the restrictions and vocabulary of OWL may not be compatible with your
RDFS-based system and knowledge model.

The rest of this chapter focuses on ontologies in the Semantic Web, including
critical assumptions and principles of OWL and an in-depth exploration of the
elements of ontologies and their uses.

Introduction to Ontologies

OWL ontologies are used to model domain knowledge. This encompasses
significantly more than the simple structure of an RDF graph or the list of
defined terms and hierarchical structure of an RDFS vocabulary. Ontologies are
the core element of the Semantic Web, and as such they are the primary focus
of the remainder of this chapter. We begin by reviewing their characteristics,
assumptions, and structures.

Distributed Knowledge
Semantic Web technologies are designed to make the World Wide Web more
machine-understandable. Resources on the Web are inherently distributed, and
as a result, the resource descriptions contained on the Semantic Web are also
distributed. OWL supports this kind of distributed knowledge model because
it is built on RDF, which allows you to declare and describe resources locally
or refer to them remotely. OWL also provides a mechanism for importing and
reusing ontologies in a distributed environment. We’ll discuss that later in the
section on ontology headers.

To provide a foundation on which to make valid inferences in the distributed
knowledge model of the Semantic Web, we must make two important assump-
tions: the open world assumption and the no unique names assumption.
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Open World Assumption

Because of the inherently distributed knowledge model of the Semantic Web,
OWL makes an open world assumption. This assumption has some significant
impacts on how information is modeled and interpreted. The open world
assumption states that the truth of a statement is independent of whether it
is known. In other words, not knowing whether a statement is explicitly true
does not imply that the statement is false. The closed world assumption, as
you might expect, is the opposite. It states that any statement that is not known
to be true can be assumed to be false. Under the open world assumption, new
information must always be additive. It can be contradictory, but it cannot
remove previously asserted information.

As an example of the open world versus the closed world, consider the
relational database that stores customer information for the local Ultra-Mart.
The absence of a record for Ryan Blace in the Customer table (depicted in
Figure 4-6) implies that Ryan Blace is not, in fact, a customer of Ultra-Mart.
This is because the database assumes that it represents a complete knowledge
model. There is no information relevant to the database that is not already
contained in it. In this case, the system has a scoped (or closed) world. In
the Semantic Web, the absence of a statement that says that the resource
representing Ryan Blace is a customer of Ultra-Mart does not imply anything
about his status as a customer.

Customers

Name Phone_Number Last_Visit

John Smith

Andrew Hebeler

Mike Fisher

Matt Dean

(703) 555-2134

(410) 555-7623

(202) 555-2944

(703) 555-5417

June 8, 2008

July 14, 2008

August 7, 2007

June 11, 2008

Figure 4-6 Applying the open world assumption, the example implies that the system is
not aware of whether or not there is a customer named Ryan Blace. With a closed world
assumption, you can infer that there is no customer with the name Ryan Blace.

Most systems operate with a closed world assumption. They assume that
information is complete and known. For many practical applications this is
a safe, and often necessary, assumption to make. However, a closed world
assumption can limit the expressivity of a system in some cases because it is
more difficult to differentiate between incomplete information and information
that is known to be untrue. Returning to the example of Figure 4-6, there is no
straightforward way to model the fact that Mike Smith may or may not be an
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employee. In a system that makes a closed world assumption, there are only
two things in the world: employees and not employees.

Abiding by the open world assumption impacts the kind of inference that
can be performed over the information contained in your model. In OWL, it
means that reasoning can be performed only over information that is known.
The absence of a piece of information cannot be used to infer the presence of
other information. This impact is real, and you must be aware of it as you
begin to work with the logical constructs and inference capabilities of OWL
ontologies. Correct inference of OWL semantics in the distributed world of the
Semantic Web relies on the adherence to the open world assumption.

No Unique Names Assumption

The distributed nature of description in the Semantic Web makes it unrea-
sonable to assume that everyone is using the same URI to identify a specific
resource. Rather, it is often the case that a resource is being described by
multiple users in multiple locations, and each of those users is using his or her
own URI to represent the resource. A simple example of this situation is the
fact that people commonly have multiple email addresses, home pages, blogs,
and social networking profiles. Each of these can serve as an identifier for an
individual, but they are all different.

The no unique names assumption states that unless explicitly stated otherwise,
you cannot assume that resources that are identified by different URIs are
different. Once again, this assumption is quite different from those of many
traditional systems. In most database systems, for instance, all information
is known, and assigning a unique identifier, such as a primary key that is
consistently used throughout the system, is possible. Like the open world
assumption, the no unique names assumption impacts inference capabilities
related to the uniqueness of resources. Redundant and ambiguous data is a
common issue in information management systems, and the no unique names
assumption makes these issues easier to handle because resources can be
made the same without destroying any information or dropping and updating
database records.

Overview of Ontology Elements
OWL ontologies are commonly stored as documents on the Web. Each docu-
ment consists of an optional ontology header, annotations, class and property
definitions (more formally referred to as axioms), facts about individuals, and
datatype definitions. Because OWL is based on the RDF model, there is no
explicit distinction between the ontology and the data the ontology is used to
describe. A less-formal way of saying this is that there is no official partition
that exists between ontologies and instances. Partitioning is arbitrary and does
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not affect the meaning of the information; however, it is a common practice to
maintain ontologies separately from the data they describe.

Ontologies optionally contain headers that define and describe the resource
representing the ontology itself. Annotation properties add nonsemantic
descriptive information to resources. Ontologies are composed of three funda-
mental semantic building blocks: classes, individuals, and properties. A class is
a set of resources. An individual is any resource that is a member of at least one
class. A property is used to describe a resource. Finally, ontologies can contain
datatype definitions that describe ranges of values.

Ontology Header
An ontology header is a resource that represents the ontology itself. The header
describes the ontology and typically contains comments, labels, versioning
information, and ontology import statements. Import statements are important
because tools use them to determine what other ontologies are referred to by
the current document and are needed to fully comprehend the concepts and
relationships described in the current ontology.

Classes and Individuals
An OWL class is a special kind of resource that represents a set of resources
that share common characteristics or are similar in some way. A resource that
is a member of a class is called an individual and represents an instance of
that class. In OWL, individuals can become members of classes both directly
(by asserting their membership explicitly) and indirectly (by defining the
membership conditions for a class such that it can be inferred that a resource
is a member of that class). In Figure 4-7, the Person resource is a class and Ryan

and Andrew are individuals.

Class

Person

Ryan Andrew

is a is a

is a

Figure 4-7 Classes in OWL represent groups of similar resources. In this example, Ryan
and Andrew are instances of the Person class.
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Properties

A property in OWL is a resource that is used as a predicate in statements that
describe individuals. There are two main types of properties in OWL: object
properties that link individuals to other individuals, and datatype properties
that link individuals to literal values. In Figure 4-8, Ryan and Andrew now have
datatype properties that specify their names. They are connected to each other
by the object property knows.

Ryan

Ryan Blace

Andrew
knows

name

Andrew Perez–Lopez

name

Figure 4-8 Properties are used to describe resources, and they are one of two primary
types: object properties or datatype properties.

Annotations

Annotations are statements (triples) that have annotation properties as pred-
icates. Annotation properties are similar to normal OWL properties, but
they have no associated semantics and are primarily used in human user
interfaces. The two most common annotation properties are rdfs:label and
rdfs:comment. Many tools are designed to interpret and use the common
predefined annotation properties when presenting information to users.

Datatypes

Datatypes in OWL represent ranges of data values. Some common datatypes
are integer, string, and time. OWL 2 allows you to define your own complex
datatypes that are explicitly enumerated or defined using facet restrictions
(value range restrictions).

The addition of custom datatypes in OWL 2 is substantial because it
allows you to model new concepts that you couldn’t in OWL 1. Using facet
restrictions, you can define a datatype that represents the correct range for a
dose of medicine as between 50 and 70 mL or create a datatype that represents
the range of legal driving ages in the United States as greater than or equal
to 16. These datatypes can then be used when describing how classes and
properties interact.
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Elements of an Ontology

Now that you’ve explored the concept of semantically describing resources
on the World Wide Web and received a cursory glance of the Web Ontology
Language, it’s time to explore the details of OWL. The following section looks
at the various constructs of OWL that are used in ontology descriptions of
domain-specific knowledge, including those that are reused and extended
from RDFS.

We begin with some introductory material covering annotations and ontol-
ogy declarations. We then move into basic classification, class membership, and
property-based description. Finally, we explore the more complex features of
the language, including defining datatypes, using property restrictions, defin-
ing classes using enumerations and set operators, and working with equality
in OWL. After studying this section, you will have the knowledge necessary
to understand and build OWL ontologies for your own domain.

N O T E This section explores the RDFS language elements as they are used and
extended in OWL, rather than addressing them in detail separately as part of a
discussion of RDFS alone. All ontology discussions and examples use the second
version of OWL (OWL 2), and all constructs specific to OWL 2 are identified as such.

W3C SEMANTIC WEB ACTIVITY RESOURCES

The World Wide Web Consortium (W3C) maintains detailed project pages for
the OWL Web Ontology Language, Resource Description Framework, RDF
Schema specifications, and other Semantic Web–related resources. These
pages contain all work, past and present, performed by the various working
groups who have contributed to W3C Semantic Web activities. These resources
can be found at the W3C Semantic Web Activity home page, at http://
www.w3c.org/2001/sw.

OWL 2 Typing
Resources in an ontology can be typed as individuals (instances of a class),
as classes, or as properties. OWL 2 specifies a series of constraints about how
resource types can be assigned in an ontology that dictates how URIs can be
used and reused as different types. As we have already briefly introduced, the
specific resource types in an ontology are individual, class, datatype, object
property, datatype property, and annotation property. The constraints on how
each type can be applied to a URI are as follows:

Object, datatype, and annotation properties must be disjoint.
No URI can be typed as more than one kind of property.
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Classes and datatypes must be disjoint. No URI can be typed as both a
class and a datatype.

These restrictions apply to the reuse of URIs that are part of the OWL
vocabulary. These restrictions allow a single URI to be used to refer to more
than one type of entity in an OWL ontology. In the OWL documentation, this
is referred to as metamodeling. One common form of metamodeling is the reuse
of a URI to represent both a class and an individual. For more information on
entity declarations and typing in OWL 2, refer to the OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax document on
the W3C website.

Ontology Header
The ontology header is a description of the resource that represents the ontology
itself. There is no requirement than an ontology document must contain
an ontology header, but it is good form. The ontology header may contain
annotations such as versioning and compatibility information as well as
labels and comments. The header may also contain a set of ontology import
statements.

The property owl:imports specifies the set of ontologies that are referred
to in the importing ontology. Import statements provide tools with the infor-
mation necessary to build a complete model of all resources referred to in an
ontology. The extent to which imports are used is dependent on the tool. Some
reasoning engines require complete information and will import the full tran-
sitive closure of all imported ontologies (all ontologies imported directly, plus
all imported by those that are imported directly, and so on), while other tools,
such as browsers and editors, may be flexible in how they handle imports.

The versioning properties, owl:priorVersion, owl:backwardCompatible

With, and owl:incompatibleWith, provide a basis for version management.
Ontology versioning is a sticky subject in general in the Semantic Web and
will be revisited later in the chapters that focus on practical applications.

Ontology headers usually contain annotation properties that describe the
ontology. The following RDF shows a sample ontology header definition
that provides an import statement and an annotation property specifying a
comment about the ontology. Notice that the subject of the ontology decla-
ration used only the prefix ex:. The namespace of the ontology document is
http://example.org/. We use that URI in the ontology declaration because
we are referring to the ontology itself, using the ontology’s URI.

@prefix ex: <http://example.org/ >.

ex: rdf:type owl:Ontology;

rdfs:comment “This is an example ontology“;

owl:imports <http://example.org/example-import>.
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Annotations

Annotations are statements that describe resources using annotation properties.
Annotation properties are semantics-free properties. These properties can
be used to describe any resource or axiom in an ontology, including the
ontology itself. Class, property, and individual annotations are made by
creating a statement that uses the annotation property as the predicate of the
statement.

Axiom annotations are slightly more complicated because their exact struc-
ture depends on the type of axiom that is being described. For example, if the
axiom being described is a statement, then a reification object is created and
the annotation is made. There are a number of other ways that axiom annota-
tions can be made, but most annotations are made about classes, properties,
and individuals, and so this discussion of axiom annotations is intentionally
brief. For more information about axiom annotations, consult the OWL 2 Web
Ontology Language Structural Specification and Functional Syntax document
on the W3C website.

Table 4-2 lists the annotation properties that are predefined in OWL. The
most commonly used are rdfs:label, rdfs:comment, and owl:versionInfo.
Each of these annotation properties can be used to make annotations about
classes, properties, individuals, and axioms.

Table 4-2 Annotation Properties Defined in OWL

PROPERTY DESCRIPTION OF USE

rdfs:label A label, or terse description of the subject resource.

rdfs:comment A comment about the subject resource.

owl:versionInfo Information about the subject ontology or resource version.
Frequently used to embed source control metadata.

rdfs:seeAlso Used to specify that another resource may hold more
information about the subject resource. Not commonly
used.

rdfs:isDefinedBy Used to specify that another resource defines the subject
resource. Not commonly used.

You can define an additional annotation property by declaring an instance
of the class owl:AnnotationProperty. Because annotation properties have
no semantic meaning, you cannot define subproperty, inverse property, or
domain and range relationships for them. Annotation properties are primarily
used by tools and applications to interact with humans.
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Basic Classification
One of the most basic ways to describe an object is to place it into a category, or
class, of things with which it shares common features. In OWL, you can define
classes and specify membership in those classes using the resources owl:Class
and rdf:type. The resource owl:Class represents the class containing all
OWL classes. Every class in OWL must be a member of owl:Class, and every
resource that has an rdf:type of owl:Class is a class. The resource rdf:type

is a property that assigns class membership to a specific resource.

Classes and Individuals

The members, or instances, of a class are referred to in OWL as individuals. The
set of individuals that are members of a class is considered its class extension.
Containment in an OWL class extension does not preclude an individual
from being a member of any other class. An OWL class has intrinsic meaning
beyond its class extension. This implies that two classes can have exactly the
same class extension but still represent unique classes, and no assumptions
can be made otherwise. This concept is important because it emphasizes that
class extension equivalence is not a sufficient condition for class equivalence.
Two classes may have the same extension in a particular context; however, if
they are different concepts, their extensions may diverge in a different context.

As the following RDF excerpt illustrates, you can use the resources owl:

Class and rdf:type to state that ex:Canine and ex:Human are classes and that
ex:Daisy is a canine and ex:Ryan is a human. In this example, ex:Daisy is an
individual and a member of the class ex:Canine. The example is a very simple
representation of a class that contains no description or information beyond a
URI. All we know about ex:Canine from this example is that it is a class and
that it has at least one member, ex:Daisy:

@prefix ex: <http://example.org/>.

# Canine and Human are owl classes

ex:Canine rdf:type owl:Class.

ex:Human rdf:type owl:Class.

# Daisy is an instance of the class Canine

ex:Daisy rdf:type ex:Canine.

# Ryan is an instance of the class Human

ex:Ryan rdf:type ex:Human.

An OWL class definition consists of some optional annotations followed
by zero or more constructs that restrict the membership of the class. These
restrictions represent descriptions of the class and form the basis of the class
definition. The various forms of class restriction include subclass relationships,
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explicit membership enumeration, property restrictions, and class-based set
operations. Each of these is discussed throughout the following sections.

C A U T I O N It is common for software developers to think that individuals in
OWL are analogous to the objects of object-oriented programming (OOP), because
they are both instances of classes. While this assumption won’t get you into too
much trouble, there are subtle differences between the two concepts. First, objects
in OOP derive all their information from their class types. The types of an object do
not depend on its characteristics; rather, its characteristics depend on its types. In
OWL, classes describe sets of individuals that share common characteristics. The
types of an OWL individual do not necessarily dictate its structure; rather, OWL
individuals can have any structure, regardless of their types.

rdfs:SubClassOf

One of the simplest ways of restricting the membership of a class is to create
a taxonomic relationship between it and other classes using the property
rdfs:subClassOf. Consider the following statement that asserts that Class1
is a subclass of Class2: (Class1 rdfs:subClassOf Class2). The statement
implies that:

Class1 is a specialization of Class2.

Each member of Class1 must be a valid member of Class2 (it
must pass all membership restrictions specified by Class2).

Membership in Class1 implies membership in Class2.

The properties of Class2, including membership restrictions, are sub-
sumed (inherited) by Class1.

Now consider the following example, which extends our previous sam-
ple ontology by asserting that the classes ex:Canine and ex:Human are each
rdfs:subClassOf a new class, ex:Mammal. Each class is now defined as a
specialized form of the class ex:Mammal. All of the members of the classes
ex:Canine and ex:Human are now implicitly also members of the class
ex:Mammal:

@prefix ex: <http://example.org/>.

ex:Mammal rdf:type owl:Class.

# Canine is a subclass of Mammal

ex:Canine rdf:type owl:Class;

rdfs:subClassOf ex:Mammal.

# Human is a subclass of Mammal

ex:Human rdf:type owl:Class;
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rdfs:subClassOf ex:Mammal.

# Both Daisy and Ryan are implicitly members of the class Mammal

ex:Daisy rdf:type ex:Canine.

ex:Ryan rdf:type ex:Human.

To understand the implications of the subclass-of relationship in a knowl-
edge management environment, consider a database with a schema that
represents humans and canines as two separate tables. Applications that wish
to extract the set of all mammals from the database must combine entries
from both the human and the canine tables. The semantics of the relation-
ship between humans and canines has been captured in the application,
not the schema. A developer understood that humans and canines are each
mammals and wrote a query that combined the two tables to produce the
desired result.

Using an ontology, you can extract the semantics of this relationship out of
the application and put them where they belong: in the knowledge model. This
way, applications can utilize the knowledge model to determine how to satisfy
a request for all mammals. This approach simplifies application development
because the application is effectively decoupled from the knowledge model.
Additional subclasses of mammals, for example, felines, can be added to the
knowledgebase and knowledge model without requiring application changes.
In the case of the database, the applications and any queries that previously
assumed that the set of mammals was composed of all canines and humans
would have to be extended to include felines.

Instance versus Subclass

Developers often confuse the distinction between the subclass-of relationship
and the instance-of relationship. This confusion stems from the fact that you
may want a concept to represent a class or an instance depending on the
conceptual context in which it is being considered.

In the example, ex:Mammal is a class because it represents the set of all
mammals in existence. The resource ex:Canine represents a specific subset of
those mammals, and ex:Daisy is one of the members of that subset. If instead
ex:Mammal represented the set of all the kinds of mammals that exist, it would
no longer make sense for ex:Canine to be its subclass. Rather, ex:Canine
would be one of the specific individuals that make up that set.

The important difference between the two relationships is that a subclass
represents a subset of the members of the parent class, while an instance
represents an individual member of a class. The following example illustrates
this difference by adding a new class hierarchy to the sample ontology:
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@prefix ex: <http://example.org/>.

...

ex:Breed rdf:type owl:Class.

ex:LargeBreed rdf:type owl:Class;

rdfs:subClassOf ex:Breed.

ex:SmallBreed rdf:type owl:Class;

rdfs:subClassOf ex:Breed.

ex:GoldenRetriever rdf:type ex:LargeBreed.

ex:Chihuahua rdf:type ex:SmallBreed.

The class ex:Breed represents the set of all dog breeds, which is
further subdivided into the subclasses ex:LargeBreed and ex:SmallBreed.
At this point, you may be tempted to add a few breeds such as ex:

GoldenRetriever and ex:Chihuahua as subclasses of ex:LargeBreed and
ex:SmallBreed, respectively; however, this is conceptually incorrect. Golden
retrievers and Chihuahuas are not subsets of breeds; they are breeds. They
should be members of the subclasses ex:LargeBreed and ex:SmallBreed, not
subclasses of them.

T I P The key question to ask when determining whether a resource is an instance
or a subclass of a specific class is: Is this resource a member of this class, or is it a
subset of the members of this class? Understanding how the concepts in question
are related is critical to answering this question.

owl:Thing and owl:Nothing

In OWL, there are two fundamental classes from which all other classes are
derived: owl:Thing and owl:Nothing. The resource owl:Thing represents the
class of all individuals, and every resource that is an instance of a class is
implicitly a member of owl:Thing. The resource owl:Nothing represents the
empty class, a class that has no members. Looking at this from a taxonomic
point of view (shown in Figure 4-9), owl:Thing is the most generalized class
possible, and owl:Nothing is the most specific class possible (it is so exclusive
that no thing can be considered a member).

Defining and Using Properties
OWL properties are used to establish relationships between resources. The
two fundamental classes of OWL properties are:

owl:ObjectProperty—The class of all relationships between individuals

owl:DatatypeProperty—The class of all relationships between an individ-
ual and a literal value
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owl:Thing

owl:Nothing
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Figure 4-9 No class can be more general than owl:Thing or more specific than
owl:Nothing because every OWL class is implicitly a subclass of owl:Thing, and
owl:Nothing is implicitly a subclass of every OWL class.

The following example demonstrates the basic definition and use of proper-
ties in ontologies. First, two new properties are created, ex:name and ex:breed,
using the resources owl:DatatypeProperty and owl:ObjectProperty, respec-
tively. Second, the properties specify that ex:Daisy has a name, ‘‘Daisy’’,
and a breed, ex:GoldenRetriever:

@prefix ex: <http://example.org/>.

...

#name is a datatype property because it refers to literals

ex:name rdf:type owl:DatatypeProperty.

#breed is an object property because it refers to an individual

ex:breed rdf:type owl:ObjectProperty.

ex:Daisy ex:name “Daisy“;

ex:breed ex:GoldenRetriever.

ex:Ryan ex:name “Ryan Blace“.

Property Domain and Range
OWL allows you to describe the domain and range relationships between
properties and classes or datatypes using the properties rdfs:domain and
rdfs:range:

rdfs:domain—Specifies the type of all individuals who are the
subject of statements using the property being described
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rdfs:range—Specifies the type of all individuals or the datatype of all lit-
erals that are the object of statements using the property being described

Domain and range specify the class memberships of individuals and the
datatypes of literals, and they are globally asserted relationships. This is
significant because it means that all future use of the resource, regardless of
context, will be subject to the domain and range specified for the property.
In general, global domain and range assertions can introduce inflexibility and
should be used with caution.

As an example, consider the sample ontology. You could further define
Daisy and assert that the most general concept in your ontology, ex:Mammal,
is the domain of the property ex:name. This is fine in the limited ontology;
however, suppose you want later to describe a bird, or an organization, or
a landmark, none of which is an ex:Mammal. You couldn’t reuse the ex:name

property without implying that those individuals were of type ex:Mammal,
which is certainly not your intention.

Describing Properties
OWL provides a number of ways to describe (or add semantics to) properties.
The first two involve describing a property in terms of another, and the rest
involve making a property a member of a class of properties that have a special
meaning in OWL.

rdfs:subPropertyOf

As with classes, properties can be arranged into taxonomies using the property
rdfs:subPropertyOf. To explain the implications of a subproperty rela-
tionship, consider the following statement that asserts that Property1 is a
subproperty of Property2: (Property1) rdfs:subPropertyOf (Property2).
The statement asserts the following:

Property1 is a specialization of Property2.

Any two resources related using Property1 are implicitly related by
Property2.

Consider the following RDF, which defines a new property, ex:registered
Name, that is used to specify Daisy’s official registered name. ex:registered
Name is a specialization of ex:name. To add that information to the ontology,
you assert that ex:registeredName rdfs:subPropertyOf ex:name. This rela-
tionship implies that Daisy’s ex:registeredName, ‘‘Morning Daisy Bathed in
Sunshine’’, is also her ex:name:

@prefix ex: <http://example.org/>.

...
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#registered name is a subproperty of name

ex:registeredName rdf:type owl:DatatypeProperty;

rdfs:subPropertyOf ex:name.

#the subproperty relationship implies that Daisy’s registered

#name is also one of her names

ex:Daisy ex:registeredName “Morning Daisy Bathed in Sunshine“.

Top and Bottom Properties

For each class of properties, both object and datatype, there are two correspond-
ing special properties defined in OWL. These two properties are the top and
bottom properties that represent the most general and most specific properties
from which all other properties are derived. The specific properties are:

owl:topObjectProperty

owl:bottomObjectProperty

owl:topDataProperty

owl:bottomDataProperty

Each of the top properties represents the most general property. The role
of owl:topObjectProperty is that it connects all possible pairs of individuals.
The role of owl:topDataProperty is that it connects all possible individuals
with all literals. Each of the bottom properties represents the most specific
property. The role of owl:bottomObjectProperty is that it connects no pairs
of individuals, and owl:bottomDataProperty does not connect any individual
with a literal.

Inverse Properties

Properties assert directed relationships, from domain to range or subject to
object. Sometimes the existence of a relationship in one direction implies that
another relationship exists in the opposite, or inverse, direction. The following
pairs are examples of inverse relationships:

identifies—is identified by

has child—has parent

has part—is a part of

OWL allows you to assert that a property is the inverse of another
using the property owl:inverseOf. Consider the following statement that
asserts that Property1 is the inverse of Property2: (Property1 owl:inverseOf

Property2). This statement implies the following:

Property1 represents a relationship that is the inverse of Property2.
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The existence of a statement (Entity1 Property1 Entity2) implies
the existence of the statement (Entity2 Property2 Entity1).

The existence of a statement (Entity2 Property1 Entity1) implies
the existence of the statement (Entity1 Property2 Entity2).

To better understand the owl:inverseOf property and its implications,
apply it to the ongoing Daisy example. The following RDF excerpt shows the
addition of two new properties: ex:hasOwner and ex:owns. The example asserts
that ex:hasOwner owl:inverseOf ex:owns and that ex:Daisy ex:hasOwner

ex:Ryan. These statements imply the existence of the statement ex:Ryan

ex:owns ex:Daisy:

@prefix ex: <http://example.org/>.

...

ex:hasOwner rdf:type owl:ObjectProperty.

ex:owns rdf:type owl:ObjectProperty.

#has owner is the inverse of owns

ex:hasOwner owl:inverseOf ex:owns.

ex:Daisy ex:hasOwner ex:Ryan

Both the domain and range of the owl:inverseOf relationship must be
object properties. Datatype properties cannot have inverses because literal
values cannot be the subjects of statements. It would not make sense for
owl:DatatypeProperty ex:name to have an inverse property ex:isNameOf

because a literal, such as ‘‘Daisy’’, cannot be the subject of a statement.

Disjoint Properties

OWL 2 provides a couple of constructs for specifying that two properties
are disjoint. When we say that two properties, property1 and property2, are
disjoint, it means that no two statements can exist where the subjects and
objects of each statement are the same, and the first statement has property1

as the predicate while the second statement has property2 as the predicate.
The first of the two disjoint property constructs is a relationship that can be
established between properties: owl:propertyDisjointWith. The following
RDF example illustrates the use of owl:disjointPropertyWith to specify that
the two properties ex:hasMother and ex:hasFather are disjoint properties:

@prefix ex: <http://example.org/>.

...

ex:hasMother rdf:type owl:ObjectProperty.

ex:hasFather rdf:type owl:ObjectProperty.

ex:hasMother owl:propertyDisjointWith ex:hasFather.
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The second method is a construct used to identify that sets of properties are
pair-wise disjoint. This construct uses the class owl:AllDisjointProperties

and the property owl:members. The following RDF demonstrates making the
same properties disjoint using this alternate construct:

@prefix ex: <http://example.org/>.

...

ex:hasMother rdf:type owl:ObjectProperty.

ex:hasFather rdf:type owl:ObjectProperty.

[] rdf:type owl:AllDisjointProperties;

owl:members (

ex:hasMother

ex:hasFather

).

Notice here that the disjoint property set is an anonymous instance. OWL
requires that instances of owl:AllDisjointProperties remain unnamed.
Although the example used to demonstrate disjoint properties uses two
object properties, datatype properties can also be made disjoint. The syntax
for datatype properties is exactly the same as that for object properties.

Property Chains

OWL 2 introduces a very interesting construct called a property chain. The
idea is to use a chain of properties that connects a set of resources as the
subproperty in an rdfs:subPropertyOf relationship. A simple example will
make this concept clear.

Consider the hasUncle relationship, where your uncle is the brother of
one of your parents. The relationship can be defined only in terms of two
properties that occur in an ordered chain connecting three individuals. So far,
you’ve learned to describe properties only in terms of one other property at a
time. Using a property chain, you can represent an ordered chain of properties
and then use it as the subproperty in a subproperty-of relationship. Using the
uncle example, you would first define a property chain representing the parent
relationship followed by the brother relationship. Next, you would assert
that the property chain was rdfs:subPropertyOf a property ex:hasUncle.
This would have the effect of expressing that the existence of the property
chain connecting two resources implies the existence of the ex:hasUncle

property. The following RDF uses property chains to express the relationship
ex:hasUncle using OWL:

@prefix ex: <http://example.org/>.

...

# Define each of the relationships
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ex:hasUncle rdf:type owl:ObjectProperty.

ex:hasParent rdf:type owl:ObjectProperty.

ex:hasBrother rdf:type owl:ObjectProperty.

# Describe the uncle relationship situation

exRyan ex:hasParent ex:Jean.

ex:Jean rdf:type ex:Human;

ex:hasBrother ex:Doug.

# Define that the property chain is a

# subproperty of the uncle relationship

[] rdfs:subPropertyOf ex:hasUncle;

owl:propertyChain (

ex:hasParent

ex:hasBrother

).

Property chains can be as long as you need them to be. Expressing the
relationship great-grandmother would be similar to expressing the uncle
relationship, only it would involve three mother properties in a chain. An
important restriction on the use of property chains is that they can be used
only as part of a subproperty relationship and they can appear only in the
subproperty position of such a relationship. They cannot be used in any other
property relationships such as an inverse, equivalent, or disjoint relationship.

Symmetric, Reflexive, and Transitive Properties

OWL provides a number of property classes that provide additional semantics
to property descriptions. The first five we will discuss are owl:Symmetric

Property, owl:AsymmetricProperty, owl:ReflexiveProperty, owl:Irre

flexiveProperty, and owl:TransitiveProperty. The final two are owl:

FunctionalProperty and owl:InverseFunctionalProperty. Asymmetric,
reflexive, and irreflexive properties are new in OWL 2.

Each property class is a subclass of owl:ObjectProperty, with the exception
of owl:FunctionalProperty. Table 4-3 contains definitions for each kind of
property.

An owl:SymmetricProperty is its own inverse. A less precise but simpler
way to think of symmetric properties is that they are bidirectional relationships.
The existence of the relationship in one direction (subject to object) implies
that the same relationship exists in the opposite direction (object to subject) as
well. Some example symmetric properties include equals, adjacent to, and
has spouse.

An owl:AsymmetricProperty can never exist as a bidirectional relationship.
No two individuals A and B can be related (A p B) and (B p A) by an
asymmetric property p. Example asymmetric properties include has mother

and is greater than.
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Table 4-3 Classes of OWL Properties

PROPERTY CLASS DEFINITION

owl:SymmetricProperty (A p B) implies the statement (B p A).

owl:AsymmetricProperty (A p B) implies there is no statement (B p A).

owl:ReflexiveProperty Implies the statement (A p A), for all A.

owl:IrreflexiveProperty Implies there is no statement (A p A), for
all A.

owl:TransitiveProperty (A p B) and (B p C) implies the statement
(A p C).

owl:FunctionalProperty (A p x) and (C p y) implies that x = y.

owl:InverseFunctionalProperty (A p B) and (C p B) implies that A = C.

In each example, A, B, and C represent individuals, x and y represent resources (literals or
individuals), and p represents a property of the corresponding type.

An owl:ReflexiveProperty relates all individuals to themselves. In math-
ematics, the equals operator (=) is reflexive, because every number is equal
to itself. Knows is a reflexive property because it is assumed that everyone
knows himself or herself. Use reflexive properties carefully, because they have
global impact; the mere definition of a reflexive property is enough to imply
that every individual is related to itself using that property. Once a reflexive
property is defined, you will never have to use the property explicitly because
it will already be implicitly asserted for every individual.

An owl:IrreflexiveProperty is a property that never relates an individual
to itself. In mathematics, the greater than (>) and less than (<) operators are
irreflexive. Has uncle and has mother are examples of irreflexive properties.
It is incorrect to assume that a property is irreflexive simply because it is not
reflexive, because properties can be reflexive, irreflexive, or neither.

The example in Table 4-3 is the most straightforward way to explain prop-
erties of type owl:TransitiveProperty. For any individuals A, B, and C and a
transitive property p, (A p B) and (B p C) implies (A p C). Transitive proper-
ties are commonly used to describe part-of-a-whole and contains relationships.
For example, the United States of America contains Virginia, which contains
Arlington. If you declare that contains is a transitive property, then it is implied
that the United States contains Arlington.

Functional and Inverse Functional Properties

An object or datatype property is functional if it is a member of the class
owl:FunctionalProperty. When a property is functional, it can associate only
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a single unique value with a particular individual. Date of birth is a good
example of a functional property because an individual can have only one
birthday, but two people can share the same birthday. An example of a
functional object property is has biological mother because a person can
have only one mother, but siblings can share the same mother. The semantics
of functional properties are such that if a person has two functional properties,
each with different individuals as the objects of the statements, it implies that
the two objects are the same. Using the has biological mother example, if
Bob has a biological mother Sue and a biological mother Susan, it is inferred
that Sue is the same person as Susan. Functional properties do not make any
assertions about the uniqueness of the subjects of statements; this is the role of
inverse-functional properties.

An object property is inverse-functional if it is a member of the class
owl:InverseFunctionalProperty. In a statement with a predicate of this
type, the object uniquely identifies the subject. No two individuals can have
the same value for that property; however, an individual can have more
than one unique value. Take the property has email address as an example.
Assume for this example that no two people can have the same email address.
If the property has email address is inverse-functional and two people share
the same value for the property, it either implies an error or indicates that
the two are actually the same person. In contrast to functional properties, it is
completely valid for one person to have multiple email addresses. A common
inverse-functional property you may be familiar with is a relational database
primary key, which serves as a unique identifier for a record in the scope of a
database table.

Keys

OWL 2 introduces the concept of keys, which are similar to inverse functional
properties in that they describe a relationship between individuals and prop-
erties such that the values of the properties uniquely identify the individuals.
Although they are similar, keys are unique from inverse functional properties
in the following ways:

Keys are class-specific.

Keys can specify one or more property expressions that com-
bine to uniquely identify the subject they describe.

Keys apply only to named individuals.

More precisely, a key describes a set of properties whose values in statements
with an individual of the specified class as the subject uniquely identify that
subject. OWL contains the property owl:hasKey, which is used to associate a
specific class with a set of properties that are the keys for instances of that
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class. The following example RDF illustrates the use of keys to specify that the
properties ex:hasOwner and ex:name together uniquely identify instances of
the class ex:Pet:

# has owner and name uniquely identify canines

ex:Canine owl:hasKey (

ex:name

ex:hasOwner

).

Sometimes tables in relational databases have multiple keys that combine to
form a primary key or unique identifier for each row. This concept is similar
to keys in OWL. For a given class (table), there is a set of properties (field)
whose values uniquely identify an instance of the class (record). Keys are
particularly significant to use cases for the Semantic Web in which data from
disparate sources is integrated. Disparate data sources often have identifiers
that are not globally unique. Once multiple sources are aggregated, more than
the local identifier alone is needed to generate a globally unique identifier.

Datatypes
Datatypes represent ranges of data values that are identified using URIs. OWL
allows you to use a number of predefined datatypes, most of which are defined
in the XML Schema Definition (xsd) namespace. The full set is too long to list
here, but a subset of the most commonly used datatypes is listed here:

Numeric—xsd:integer, xsd:float, xsd:real, xsd:decimal

String—xsd:string, xsd:token, xsd:language

Boolean—xsd:Boolean

URI—xsd:anyUri

XML—rdf:XMLLiteral

Time—xsd:dateTime

For more information on any of these datatypes, consult the OWL 2 Syntax
document on the W3C website.

In addition to the predefined datatypes, OWL 2 introduces the ability to
define your own. There are two ways to define a datatype: you can create a
custom data range, or you can define a datatype in terms of other datatypes.
The following sections introduce these methods.

Datatype Restrictions

OWL allows you to define your own datatypes by creating instances of the
class rdfs:Datatype and associating one or more facet restrictions with the
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instance. A facet restriction is a way of describing a set of values for a specific
datatype that makes up the range of valid values. An example of a simple
instance of data range is all integers greater than 5. In this example, integer is
the datatype of the range and the facet restriction is greater than 5. A single data
range can have more than one facet restriction, allowing you to build complex
ranges. All of the available facets are presented and described in Table 4-4.

Table 4-4 Facets Supported by OWL

FACET DESCRIPTION

xsd:length N is the exact number of items (or characters) allowed.

xsd:minLength N is the minimum number of items (or characters) allowed.

xsd:maxLength N is the maximum number items (or characters) allowed.

xsd:pattern A regular expression that defines allowed character strings.

xsd:minInclusive Values must be greater than or equal to N.

xsd:minExclusive Values must be strictly greater than N.

xsd:maxInclusive Values must be less than or equal to N.

xsd:maxExclusive Values must be strictly less than N.

xsd:totalDigits The number of digits must be equal to N.

xsd:fractionDigits N is the maximum number of decimal places allowed.

N refers to the value portion of the facet restriction.

The following RDF demonstrates how to define two example data ranges
using facets. The first data range represents all integers greater than 5 and
less than or equal to 10, commonly represented by the notation (5, 10]. Notice
that multiple restrictions are combined into a list in order to fully describe
the range. The second example represents Social Security numbers. Each data
range is created as an anonymous resource because OWL does not allow data
ranges to be named:

@prefix ex: <http://example.org/>.

...

#integers in the range (5, 10]

[]

rdf:type rdfs:Datatype;

owl:onDatatype xsd:integer;

owl:withRestrictions (

[

xsd:maxInclusive 10;
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]

[

xsd:minExclusive 5;

]

).

#valid social security numbers

[]

rdf:type rdfs:Datatype;

owl:onDatatype xsd:string;

owl:withRestrictions (

[

xsd:pattern “[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]“;

]

).

N O T E The examples are temporarily diverting from the ongoing ontology
example for this discussion of datatypes, but we’ll apply custom datatypes to the
example ontology during the discussion of property restrictions in the next section.

Defining Datatypes in Terms of Other Datatypes

OWL provides a couple of additional methods of creating your own datatypes.
You can use one of the OWL set operator constructs owl:intersectionOf,
owl:unionOf, or owl:datatypeComplementOf to define a new datatype. Also,
you can define a datatype as consisting of an enumeration of values using
owl:oneOf. The following RDF demonstrates each of these kinds of datatype
descriptions:

@prefix ex: <http://example.org/>.

...

# Integers other than 0 using union-of

[] rdf:type rdfs:Datatype;

owl:unionOf (

[

rdf:type rdfs:Datatype;

owl:onDatatype xsd:integer;

owl:withRestrictions (

[

xsd:maxExclusive 0;

]

)

]

[

rdf:type rdfs:Datatype;

owl:onDatatype xsd:integer;

owl:withRestrictions (
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[

xsd:minExclusive 0;

]

)

]

).

# Combining complement-of and intersection-of to create

# the strings that don’t match social security numbers

[] rdf:type rdfs:Datatype;

owl:intersectionOf (

xsd:string

[

rdf:type rdfs:Datatype;

owl:datatypeComplementOf [

rdf:type rdfs:Datatype;

owl:onDatatype xsd:string;

owl:withRestrictions (

[

xsd:pattern

“[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]“;

]

)

]

]

).

# The prime numbers less than ten using one-of

[] rdf:type rdfs:Datatype;

owl:oneOf (2 3 5 7).

The first example creates a union of the ranges of integer values that are
greater than zero and less than zero. The second example combines the use of
the datatype complement-of set operator and the intersection-of set operator
to create a datatype that is all strings that do not match the pattern for a
social security number. In this example, it would not be enough to simply take
the complement of the strings that match the social security number pattern
because that datatype would represents all values that are not strings that match
the social security number pattern. Such a datatype includes all integers, floats,
decimals, and so on. To make sure that the datatype includes only strings that
do not match the social security number pattern, the intersection of the
complement and all xsd:string values is specified.

The final example demonstrates that you can specify that a data range is one
of a set of specified values. In this case, the data range is prime numbers less
than 10, and the values are 2, 3, 5, and 7.
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Negative Property Assertions
The most common use case for properties is to specify the existence of some
relationship between an individual and something else—either a literal or
another individual. OWL 2 introduces a new way to use properties in which
an assertion is made that no relationship exists, for a particular property,
between an individual and something else. In the following RDF example, a
negative property assertion is made that specifies that the individual ex:Daisy
does not have the owner ex:Amber:

@prefix ex: <http://example.org/>.

...

[] rdf:type owl:NegativePropertyAssertion;

owl:sourceIndividual ex:Daisy;

owl:assertionProperty ex:hasOwner;

owl:targetIndividual ex:Amber.

Negative property assertions can be made for both object and datatype
properties. The specification changes slightly with owl:targetValue replacing
owl:targetIndividual. The following RDF example demonstrates the use of
a negative property assertion to specify that the individual ex:Daisy does not
have the name Rudiger:

@prefix ex: <http://example.org/>.

...

[] rdf:type owl:NegativePropertyAssertion;

owl:sourceIndividual ex:Daisy;

owl:assertionProperty ex:name;

owl:targetValue “Rudiger“.

Notice that negative property assertions are in fact instances of the class
ex:NegativePropertyAssertion. These instances cannot be named according
to the OWL specification.

Negative property assertions are useful because without them, it is inconve-
nient at best to try to model that a specific relationship does not exist between
an individual and a value. A consequence of the open-world assumption is
that in order for something to be known, it has to be stated either explicitly
or implicitly as the result of interpreting the semantics of OWL. Consider
that you don’t know Daisy’s breed, but you know for a fact that she is not a
Chihuahua. Without negative property assertions, you would have to create
an extra property in your ontology in order to capture this information. You
might have an ex:breed property and an ex:notBreed property. This negative
assertion construct gives you a way to reuse elements of your ontology for
more than one purpose.
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Property Restrictions
So far, we have only discussed how to describe properties in the global context.
Property descriptions (rdfs:subPropertyOf, owl:inverseOf) and property
types (symmetric, reflexive, transitive, and so on) are each global descriptions
of properties. It is also useful to be able to describe properties within the
context of a specific class. This is the purpose of property restrictions. Using
property restrictions, you can specify how a property is to be used when it is
applied to an instance of a particular class.

A property restriction describes the class of individuals that meet the
specified property-based conditions. The restriction is declared using the
construct owl:Restriction, and the property to which the restriction refers is
identified using the property owl:onProperty.

Restrictions are applied to a particular class by stating that the class is either
a subclass (rdfs:subClassOf) or the equivalent class (owl:equivalentClass)
of the restriction. owl:equivalentClass is a construct that states that two
classes are the same and have the same class extension. We discuss this class
relationship in the later section ‘‘Equivalence in OWL.’’ When a class is related
to a restriction using the subclass-of relationship, the restriction specifies con-
ditions necessary for membership in the class. That is, all members of the
class must meet the conditions specified by the restriction. When a class is
related to a restriction using the equivalent-class relationship, the restriction
specifies conditions that are not only necessary but also sufficient to assert that
an individual is a member of the class. That is, class members must meet the
conditions of the restriction and any individual who meets the conditions of
the restriction is implicitly a member of the class. A single class can contain
many restrictions. When this is the case, each restriction is applied indepen-
dently of the others to create a set of conditions that are each either necessary
or sufficient for membership in the class.

There are two kinds of property restrictions: value and cardinality. In
addition, OWL 2 introduces the concept of qualified cardinality restrictions,
which combine cardinality and value restrictions. These will be described in the
following subsections. After each description, we will apply some restrictions
to our ongoing sample ontology.

Value Restrictions

OWL provides three types of value restrictions for specifying the range of
a property when it is used with an instance of a particular class: owl:all
ValuesFrom, owl:someValuesFrom, and owl:hasValue. Table 4-5 contains con-
cise explanations of each kind of restriction.
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Table 4-5 Semantics of Value Restrictions

RESTRICTION INTERPRETATION

owl:allValuesFrom For all instances, if they have the property, it must
have the specified range.

owl:someValuesFrom For all instances, they must have at least one
occurrence of the property with the specified range.

owl:hasValue For all instances, they must have an occurrence of the
property with the specified value.

This table is derived from an example contained in the OWL Web Ontology Language
Guide—http://www.w3.org/TR/owl-guide.

The first restriction in the following RDF excerpt defines a restriction that
the property ex:registeredName has a range of datatype xsd:string, when
it is used with the class ex:Canine. This means that anytime the property
ex:registeredName is used with an instance of the class ex:Canine, it must
have a value with the datatype xsd:string. When an individual is a member
of the class ex:Canine but does not meet this restriction, it is not a valid
member of the class.

The second example restriction in the following code uses an equivalent-class
restriction to state that every instance of ex:Canine must have at least one
ex:breed that is an instance of the class ex:Breed and that any individual that
meets these conditions is implicitly an instance of the class ex:Canine. It is
important to note that this is not the same as saying that the range of ex:breed
is ex:Breed. According to this example, it would be completely valid for an
instance of ex:Canine to have an ex:breed of ex:Human, as long as there is
at least one ex:breed property that does point to an instance of ex:Breed.
Moreover, the lack of at least one ex:breed property that points to an instance
of ex:Breed does not mean that the information is invalid; rather, the open
world assumption asserts that a property that satisfies the condition of the
restriction exists somewhere; you just aren’t aware of what it is yet:

@prefix ex: <http://example.org/>.

...

# registeredName must always have a range of xsd:string

# when it is used to describe a Canine

ex:Canine rdfs:subClassOf [

rdf:type owl:Restriction;

owl:onProperty ex:registeredName;

owl:allValuesFrom xsd:string

].

# Any individual with a breed that is an instance of

# the class Breed is implicitly a Canine

ex:Canine owl:equivalentClass [
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rdf:type owl:Restriction;

owl:onProperty ex:breed;

owl:someValuesFrom ex:Breed

].

# annotating this property with a comment

# that average weight is in pounds (lbs)

ex:averageWeight rdf:type owl:DatatypeProperty;

rdfs:comment “Average weight in pounds (lbs)“.

N O T E This and the rest of the examples create restrictions as anonymous
resources using the bnode syntax of Turtle (the square brackets [ ]). The OWL
specification requires that restrictions cannot be named and must be defined
using anonymous resources. This is a reasonable condition because restrictions
are relevant only to the context of the class in which they are defined and never
need to be referred to.

To help explain the final kind of value restriction, owl:hasValue, we’re
going to add a new class, ex:PetsOfRyan, to the sample ontology. There are
two conditions that must be met to be a member of this class. The first is
that all members must be mammals, and the second is that each member
must be owned by Ryan. The concept of ownership and the class of mammals
are already defined, so all that is needed is to construct a class that uses
those concepts to restrict its membership. The following RDF contains the
class definition for ex:PetsOfRyan. The first part of the definition states that
ex:PetsOfRyan is a subclass of ex:Mammal. The second part of the definition
contains a value restriction that asserts that every instance of ex:PetsOfRyan
must have a property ex:hasOwner that has a value of ex:Ryan. This restriction
does not preclude an instance of ex:PetsOfRyan from having another owner
who is not ex:Ryan; it merely asserts that one of the owners has to be ex:Ryan:

@prefix ex: <http://example.org/>.

...

ex:Mammal rdf:type owl:Class.

ex:hasOwner rdf:type owl:ObjectProperty.

...

ex:PetsOfRyan rdf:type owl:Class;

rdfs:subClassOf ex:Mammal;

rdfs:subClassOf[

rdf:type owl:Restriction;

owl:onProperty ex:hasOwner;

owl:hasValue ex:Ryan

].

# cleans is an object property

ex:cleans rdf:type owl:ObjectProperty.

# Feline is a subclass of Mammal
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# and Mini is a Feline who cleans herself

ex:Feline rdf:type owl:Class;

rdfs:subClassOf ex:Mammal.

ex:Mini rdf:type ex:Feline;

ex:cleans ex:Mini.

# Self cleaners are all individuals who clean themselves

ex:SelfCleaner rdf:type owl:Class;

owl:equivalentClass [

rdf:type owl:SelfRestriction;

owl:onProperty ex:cleans

].

There is one final type of value restriction that is different from the others,
called a self-restriction. This restriction takes a single parameter, the property
on which the restriction applies, and is used to refer to the class of all
individuals that are related to themselves using that property. In addition, the
class representing a self-restriction is different from other restrictions and is
identified by the URI owl:SelfRestriction. The preceding example contains a
class called ex:SelfCleaner, which is defined as the set of all individuals who
clean themselves. In the example, Mini is a member of the class ex:Feline

and Mini cleans herself. This implies that Mini is a member of the class
ex:SelfCleaner.

Cardinality Restrictions

Cardinality restrictions give you the ability to specify in very precise terms
how many times a property can be used to describe an instance of a class.
OWL provides the cardinality restrictions listed in Table 4-6.

Table 4-6 Semantics of Cardinality Restrictions

RESTRICTION INTERPRETATION

owl:minCardinality There must be at least N properties.

owl:maxCardinality There can be at most N properties.

owl:cardinality There are exactly N properties.

N refers to the value of the cardinality restriction. (N must be nonnegative.)

Going back to the example ontology, the members of the class ex:Canine

can have a maximum of one registered name and must have at least one
breed. As the following RDF illustrates, we can capture these conditions using
cardinality restrictions. The first restriction states that each member of the class
ex:Canine must have at most one property, ex:registeredName. The second
restriction states that each member must have at least one property, ex:breed.
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@prefix ex: <http://example.org/>.

...

ex:Canine rdfs:subClassOf [

rdf:type owl:Restriction;

owl:onProperty ex:registeredName;

owl:maxCardinality 1

].

ex:Canine rdfs:subClassOf [

rdf:type owl:Restriction;

owl:onProperty ex:breed;

owl:minCardinality 1

].

Cardinality and value restrictions can be combined to create more interesting
class membership conditions. The example that follows is the most complex
class description so far. This example uses the combination of a value restriction
with a custom datatype and a cardinality restriction to specify that the class
ex:LargeBreed is a subclass of ex:Breed and that all instances of the class
must have at least one property, ex:averageWeight, and that all values of that
property must be greater than or equal to 50. Each instance of ex:LargeBreed
must have at least one ex:averageWeight property, and all of the values for
that property must be greater than or equal to 50:

@prefix ex: <http://example.org/>.

...

# Large breeds must have average

# weight greater than or equal to 50 lbs

ex:LargeBreed rdf:type owl:Class;

rdfs:subClassOf ex:Breed;

rdfs:subClassOf [

rdf:type owl:Restriction;

owl:minCardinality 1;

owl:onProperty ex:averageWeight

];

rdfs:subClassOf [

rdf:type owl:Restriction;

owl:onProperty ex:averageWeight;

owl:allValuesFrom [

rdf:type rdfs:Datatype;

owl:onDatatype xsd:real;

owl:withRestrictions (

[

xsd:minInclusive 50.0;

]

)

]

].
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The example RDF contains a description of ex:LargeBreed that is restricted
in such a way that all members of that class must meet each of those restrictions.
The conditions are necessary for class membership. What if you wanted to
make those conditions together both necessary and sufficient for membership
in the ex:LargeBreed class? Previous examples have used equivalent-class
relationships to do just that; however, in this situation, this approach will not
have the desired effect. In the previous example, to assert that the cardinality
restriction is an equivalent-class relationship would imply that any individual
with at least one property, ex:averageWeight, is a member of the class
ex:LargeBreed. This implication would occur regardless of whether the other
restrictions were met or not. This is because each of the restrictions is applied to
the description of ex:LargeBreed independently of one another. Such behavior
is clearly not the intention of this class definition. You will revisit this example
in the section on defining classes using set operations to demonstrate how to
create class descriptions similar to ex:LargeBreed where the restrictions are
both necessary and sufficient for class membership.

Qualified Cardinality Restrictions

OWL also provides the notion of qualified cardinality restrictions. These
restrictions combine elements of cardinality and value restrictions to allow
you to specify not only the number of expected properties but also their range.
OWL includes the qualified cardinality restrictions listed in Table 4-7.

Table 4-7 Semantics of Qualified Cardinality Restrictions

RESTRICTION INTERPRETATION

owl:minQualifiedCardinality There must be at least N properties
that each point to an instance of C.

owl:maxQualifiedCardinality There can be at most N properties that
each point to an instance of C.

owl:qualifiedCardinality There are exactly N properties that
point to an instance of C.

N refers to the value and C refers to the class of the qualified cardinality restriction. (N must be
nonnegative.)

As an example, consider you have the property ex:hasBiologicalParent,
and you want to model the fact that any ex:Canine has two biological
parents, one male and one female. Using standard cardinality restrictions,
the only way you could actually restrict the class so that an instance of
ex:Canine has exactly one male parent and one female parent would be to
define properties that represent the hasMother and hasFather relationships.
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While this doesn’t seem like a significant issue, consider the same problem
when describing a complex system such as the components of an automobile.
A single hasComponent property is much more tractable than hundreds of
component-specific properties.

Using qualified cardinality restrictions, you can specify a cardinality restric-
tion that applies only when the property of the restriction has a range that is an
instance of a specific class. The following example demonstrates the use of a
qualified cardinality restriction that specifies that an ex:Canine must have two
ex:hasBiologicalParent properties, and that one must point to an instance
of type ex:Male and one must point to an instance of type ex:Female. The first
restriction asserts that a canine must have exactly two biological parents. The
second asserts that a canine must have exactly one biological parent that is
male. Finally, the third asserts that a canine must have exactly one biological
parent that is female:

@prefix ex: <http://example.org/>.

...

ex:Canine rdf:type owl:Class;

ex:Male rdf:type owl:Class.

ex:Female rdf:type owl:Class.

ex:hasBiologicalParent rdf:type owl:ObjectProperty.

...

ex:Canine rdfs:subClassOf [

rdf:type owl:Restriction;

owl:cardinality 2;

owl:onProperty ex:hasBiologicalParent

];

rdfs:subClassOf {

rdf:type owl:Restriction;

owl:qualifiedCardinality 1;

owl:onProperty ex:hasBiologicalParent;

owl:onClass ex:Male

];

rdfs:subClassOf {

rdf:type owl:Restriction;

owl:qualifiedCardinality 1;

owl:onProperty ex:hasBiologicalParent;

owl:onClass ex:Female

]

].

While this example deals with a qualified cardinality restriction that is
applied to object properties and the classes of the individuals to which
they refer, qualified cardinality restrictions can be constructed for datatype
properties as well. The only difference is that instead of using the property
owl:onClass to identify the class to which the restriction refers, you use the
property owl:onDataRange to identify a range of data values for the restriction.
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The semantics of datatype property–qualified cardinality restrictions are the
same as those for object properties.

Advanced Class Description
OWL provides a few more methods for describing classes. You can explicitly
enumerate the members of a class, and you can describe the class membership
in terms of other classes using the set operators union-of, intersection-of, and
complement-of. Finally, you can define that the memberships of any two
classes are disjoint.

Enumerating Class Membership

OWL allows you to define a class by explicitly enumerating its instances,
as demonstrated in the following example, by adding the new class
ex:FriendsOfDaisy to the ongoing ontology example. ex:FriendsOfDaisy

represents all of Daisy’s canine friends, and for this example you will list
each member of the class explicitly. Listing the membership of a class in
this manner completely specifies the class extension of ex:FriendsOfDaisy.
No individual that is not listed in the enumeration can become a member of
this class. In addition, an individual that is included in a class membership
enumeration is implicitly a member of that class:

@prefix ex: <http://example.org/>.

...

ex:Daisy rdf:type ex:Canine.

...

ex:Cubby rdf:type ex:Canine.

ex:Amber rdf:type ex:Canine.

ex:London rdf:type ex:Canine.

# Each friend of Daisy’s is explicitly included in this class

ex:FriendsOfDaisy rdf:type owl:Class;

owl:oneOf (

ex:Cubby

ex:Amber

ex:London

).

Set Operators

OWL provides three set operations that can be used to describe the mem-
bership of a class in terms of the extensions of other classes. These are
owl:intersectionOf, owl:unionOf, and owl:complementOf. Table 4-8 defines
the behavior of each set operation. Each operation is analogous to its set
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theory counterpart. Intersection-of and union-of each operate on the exten-
sions of a list of class expressions, while complement-of operates on the
extension of a single class expression. Each set operation establishes an
equivalent-class relationship with the class that it is describing. This means
that whatever set of instances the operation identifies as its result is implicitly
the same as the extension of the described class.

Table 4-8 The Semantics of Set Operators

SET OPERATION INTERPRETATION

owl:intersectionOf Individuals that are instances of all classes A, B, and C

owl:unionOf Individuals that are instances of at least one class A, B, or C

owl:complementOf Individuals that are not instances of class A

A, B, and C are class expressions (class reference, class definition, restriction, etc.).

The following RDF demonstrates the use of each of the set operators
when defining classes. The first example revisits the class descriptions that
described the class ex:PetsOfRyan and asserted conditions necessary for
inclusion in that class. Set operators are slightly different from most of the
descriptions you have used to this point. They describe conditions that are both
necessary and sufficient for class membership. By redefining ex:PetsOfRyan

using owl:intersectionOf, we can correctly assert that anything that is both
an ex:Mammal and is described by the property ex:hasOwner with a value of
ex:Ryan is implicitly a member of ex:PetsOfRyan.

The second example demonstrates the use of owl:unionOf to describe a
new class, ex:FriendsOfRyan, as the combined class extensions of a class that
enumerates its membership as only Daisy, the class ex:FriendsOfDaisy, and
the restriction that describes all individuals who have an ex:isFriendsWith

relationship with ex:Ryan.
The final example uses owl:complementOf to define the membership of

a final class ex:EnemiesOfRyan as the complement of the membership of
ex:FriendsOfRyan:

@prefix ex: <http://example.org/>.

...

# Example 1—intersection of

ex:PetsOfRyan rdf:type owl:Class;

owl:intersectionOf (

ex:Mammal

[

rdf:type owl:Restriction;

owl:onProperty ex:hasOwner;

owl:hasValue ex:Ryan
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]

).

# Example 2—union of

ex:isFriendsWith rdf:type owl:ObjectProperty.

ex:FriendsOfRyan rdf:type ex:Class;

owl:unionOf (

[

rdf:type owl:Class;

owl:oneOf (

ex:Daisy

)

]

ex:FriendsOfDaisy

[

rdf:type owl:Restriction;

owl:onProperty ex:isFriendsWith;

owl:hasValue ex:Ryan

]

).

#Example 3—complement of

ex:EnemiesOfRyan rdf:type owl:Class;

owl:complementOf ex:FriendsOfRyan.

Disjoint Classes

OWL supports the notion of disjoint classes. When two classes are related
using the property owl:disjointWith, no instance of either class can be an
instance of both classes. More precisely, the sets representing each class’s
extension share no members (are disjoint). Returning to the example ontology,
you can assert that the classes ex:Canine and ex:Human are disjoint because no
instance of ex:Canine can also be an instance of ex:Human, and no instance of
ex:Human can be an instance of ex:Canine. The following example illustrates
how to add this new information to the ontology:

@prefix ex: <http://example.org/>.

...

# canine and human are disjoint classes

ex:Canine owl:disjointWith ex:Human.

ex:Animal rdf:type owl:Class.

ex:Bird rdf:type owl:Class;

rdfs:subClassOf ex:Animal.

ex:Lizard rdf:type owl:Class;

rdfs:subClassOf ex:Animal.

ex:Feline rdf:type owl:Class;

rdfs:subClassOf ex:Animal.
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# Each of the classes is pair-wise disjoint

: rdf:type owl:AllDisjointClasses;

owl:members (

ex:Bird

ex:Lizard

ex:Feline

ex:Canine

).

# Each of the classes is pair-wise disjoint

# and Animal is the union of those classes

ex:Animal owl:disjointUnionOf (

ex:Bird

ex:Lizard

ex:Feline

ex:Canine

).

OWL provides a shortcut for defining that a set of classes is pair-
wise disjoint, using the construct owl:AllDisjointClasses and the property
owl:members. The preceding example asserted that the subclasses of ex:Animal
are pair-wise disjoint. Sometimes you may want to define that a class is the
union of a set of disjoint classes. You can define the class ex:Animal to say
that it is exactly the class that is the union of all of its disjoint subclasses.
OWL provides the notion of a disjoint union, specified using the property
owl:disjointUnionOf, which points to a collection of classes.

The drawback to the use of a disjoint union to define a superclass is that any
future attempt to incorporate a new subclass of ex:Animal will require you to
redefine the disjoint union to include the new subclass. The benefit of such a
specification is control—you can essentially close or limit the membership of
a superclass so that it can have only members that are members of the disjoint
subclasses.

Equivalence in OWL
Early in this chapter you explored a motivation for the Semantic Web that
involves being able to define concepts in one knowledge domain in terms
of the concepts of another. You’ve already explored many of the ways to do
this, but you’ve not yet covered how to state explicitly whether two concepts,
properties, or individuals are equivalent. This section briefly explores the
various properties and associated semantics that OWL provides for stating
equivalence between resources. They are:

owl:sameAs

owl:differentFrom
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owl:equivalentClass

owl:equivalentProperty

Equivalence among Individuals

As discussed in the beginning of this chapter, OWL uses a no unique
names assumption. In order to deal with the various names (URIs) that a
single individual can have as a result of the assumption, OWL provides
the property owl:sameAs for asserting that two individuals with differ-
ent URIs are the same. The example we used in our discussion of the no
unique names assumption involved two URIs, mailto:rblace@bbn.com and
http://example.org/people#rblace, that each refer to the same individual,
the person Ryan Blace. To establish that these two URIs represent the same
thing, you can assert the statement (mailto:rblace@bbn.com owl:sameAs

http://example.org/people#rblace). Once this relationship is established,
the two individuals are treated as though they are the same.

OWL also provides a property that indicates that two URIs refer to different
individuals, owl:differentFrom. This property is very important, because
the combination of the open world assumption and the no unique names
assumption results in an environment where there are very few situations
in which you can assume that resources identified by different URIs are
different.

To reduce the number of statements required to assert that a large set
of individuals is pair-wise different, OWL also provides the construct owl:

AllDifferent and the property owl:distinctMembers. These two resources
allow you to define a collection of individuals that are pair-wise different:

@prefix ex: <http://example.org/>.

...

ex:Daisy rdf:type ex:Canine.

ex:Cubby rdf:type ex:Canine.

ex:Amber rdf:type ex:Canine.

ex:London rdf:type ex:Canine.

...

[] rdf:type owl:AllDifferent;

owl:distinctMembers (

ex:Daisy

ex:Cubby

ex:Amber

ex:London

).
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Equivalence among Classes and Properties

In addition to equivalence properties for individuals, you can use owl:

equivalentClass to assert that two classes are equivalent and owl:equivalent

Property to assert that two properties are equivalent.
When you assert that two classes are equivalent, the two classes are treated

as a single resource from then on. All class restrictions and the class extensions
are shared between the two classes. This implies that all individuals who are
members of either class will implicitly become members of the other class
as well. When you assert that two properties are equivalent, the property
descriptions are combined. Every statement that uses one of the properties as
a predicate implicitly exists with the other equivalent property as a predicate
as well.

Earlier sections in this chapter presented the concepts of disjoint classes and
properties. Specifying that two classes are disjoint is one way to specify that
they are different; however, classes can be different but still share overlapping
or identical extensions. The semantics of disjoint properties are different from
disjoint classes, but the idea is similar. Stating that properties are disjoint is
a very strong way of saying that they are different. Two properties can be
different and not be disjoint. Later chapters will explore the topic of ontology
mapping in depth by building a system that integrates multiple knowledge
domains.

Summary

This chapter explored the role of semantics in information modeling and
the Semantic Web. We presented a thorough overview of the OWL Web
Ontology Language and reviewed a number of examples illustrating the use
of the various semantic constructs in the language. Chapter 5, ‘‘Modeling
Knowledge in the Real World’’ builds on the foundation of this chapter by
exploring the practical considerations you will have to make as you incorporate
semantics into your own applications.





C H A P T E R

5
Modeling Knowledge in the

Real World
‘‘Welcome to the real world’’

—Morpheus, The Matrix

Most of the discussion so far about RDF, OWL, and ontologies has been very
abstract. To this point, you’ve learned what they are, but not as much about
how to use them in practical applications and how to utilize the information
they enable you to model.

This chapter is about using OWL ontologies in the real world. In it, you
learn about:

How ontologies fit into practical applications

The concept of inference and how it is critical to the implementation
of the semantics of OWL

Profiles of OWL, their purposes, and how they can be used to provide
desirable computational characteristics to systems using OWL

Critical design principles for information-management applications

Exploring the Components of the Semantic Web

OWL ontologies allow you to describe things using explicit semantics. In
Chapter 4, we often said that the semantics of various OWL constructs imply
other information. For example, a statement asserting that two classes are
related using rdfs:subClassOf implies that all members of the subclass are
also members of the superclass. Returning to the example in Chapter 4,

141
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Daisy is a member of the class ex:Canine because it is explicitly stated in the
following RDF excerpt:

@prefix ex: <http://example.org/>.

ex:Mammal rdf:type owl:Class.

# Canine is a subclass of Mammal

ex:Canine rdf:type owl:Class;

rdfs:subClassOf ex:Mammal.

# Daisy is implicitly a member of the class Mammal

ex:Daisy rdf:type ex:Canine.

The semantics of the rdfs:subClassOf relationship between ex:Canine and
ex:Mammal implies that Daisy is also a member of the class ex:Mammal. In this
example, the fact that Daisy is a canine is explicit. The fact that she is also a
mammal is implicit, or implied by the semantics of the ontology.

OWL is merely an ontology language; it is not an application. As such,
OWL alone doesn’t really do anything. OWL is a tool for specifying semantics
and defining knowledge models. Real-world applications must implement the
features of OWL to utilize the descriptive power of its semantics. To provide
these capabilities, many Semantic Web applications use a framework of inte-
grated components to provide the storage and retrieval of RDF information,
as well as the interpretation of OWL semantics. We have already touched on
this subject in the introduction to this book, but now we will go into depth
exploring these frameworks and their components.

Semantic Web frameworks are used for many different purposes, including
database translation and integration, domain knowledge modeling, validation,
analysis, and even simply the storage and retrieval of information. Regardless
of their purpose, most frameworks provide the ability to create and manipulate
a knowledgebase. A knowledgebase is a software component that represents
a collection of information that is ontologically described, processed, and
accessed in a Semantic Web application. To provide this capability, a frame-
work is composed of a set of tools, including an RDF store (often referred to as a
triple store or graph store), an access API or query processor, and a reasoning engine
(or reasoner). Each of these components plays a critical role in providing the
storage and retrieval of RDF data, as well as the interpretation of the semantics
of OWL ontologies and instance data.

While many Semantic Web frameworks are developed and released as com-
plete packages, they usually allow developers to customize each component
to optimize the framework for a specific set of requirements. For example,
the Jena Semantic Web Framework, which we will explore in greater depth
throughout this chapter and the rest of this book, provides interfaces for you to
incorporate your own RDF storage mechanism or your own reasoning engine.
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The Sesame RDF Framework provides a stack-based interface model that
allows you to insert your own layers, providing custom storage and inference.

Developers have a large number of component implementations to choose
from when customizing these frameworks because the components of the
Semantic Web are built upon open standard interfaces, languages, and proto-
cols. The following subsections explore the concepts, technologies, and tools
necessary to apply Semantic Web technology to problems in the real world,
beginning with Semantic Web frameworks.

Semantic Web Frameworks
Most Semantic Web frameworks are a collection of integrated tools that allow
you to create and work with a knowledgebase. The framework is the set of
tools; the knowledgebase is the capability or concept of what they achieve.
These frameworks are usually composed of three basic kinds of components,
as depicted in Figure 5-1: storage, access, and inference. Each element is
interconnected because there is often a lot of interaction among these various
components. Storage components are repositories of RDF statements that store
information. Access components are usually query processors or application
programming interfaces (APIs) that provide the retrieval and modification
of information, and inference components are reasoning engines that apply
interpretation of OWL semantics to the information in the knowledgebase.

RDF Store

Backward Chaining 
Forward Chaining

Reasoner
Query Endpoint 

APIs

SWRL

STORAGE

INFERENCE ACCESS

RDF 
OWL SPARQL

Figure 5-1 A Semantic Web framework (and knowledgebases in general) usually consists
of three fundamental components: storage, access, and inference.

Fundamentally, a knowledgebase is a collection of facts (statements). The
components of a Semantic Web framework serve to store, provide access to,
and infer about these facts. Facts can be explicit or implicit. Explicit facts
are those that have been directly asserted in the knowledgebase. Implicit
facts are entailments, facts whose existence is implied by the combination of
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explicit facts and the semantics of ontologies and rules in the knowledgebase.
Entailments are derived by the reasoning component of the knowledgebase.
Depending on implementation, entailments may be stored directly in the
underlying storage mechanism or they may be derived as needed when infor-
mation is retrieved from the knowledgebase. Knowledgebase implementations
may perform inference automatically or not, and they can perform inference
internally within the knowledgebase or through an external process.

The modular design of most Semantic Web frameworks allows developers to
customize the various aspects of the framework to optimize the knowledgebase
for a specific set of requirements. For example, if the application requires a
very fast system that can operate over large volumes of data with minimal
support for the semantics of OWL, the knowledgebase should integrate a
highly scalable persistent RDF store with a fast retrieval implementation
and a minimal inference component. If the requirements call for complete
OWL inference capabilities but are not as concerned with scalability and
large volumes of data, a very lightweight in-memory RDF store may be used
in combination with a powerful reasoning engine. These types of tradeoffs
are common when building Semantic Web applications because increasingly
complex ontologies are often accompanied with increasing computational
requirements to compute all entailments.

Storing and Retrieving RDF
All Semantic Web frameworks require storage and access mechanisms, but not
all frameworks include scalable, high-performance RDF stores. A framework’s
storage and access mechanism can range from a small in-memory model
with a retrieval API to a server-based RDF store capable of storing billions
of statements with a query processor that can handle hundreds of concurrent
queries. The implementation of a Semantic Web framework storage component
is usually transparent to a user because the user interacts with it only through
the access component. The implementations of access components are usually
transparent as well, because most lie behind standardized interfaces.

RDF Store Implementations

RDF stores persist the statements contained in an RDF graph. Efficiently
storing and accessing RDF is an area of significant research interest because
the flexible model of RDF does not work well with traditional relational
storage models that rely on well-defined, static structural expectations to
improve performance. Relational database-based RDF stores use tables to
store subject, predicate, and object triples. They often assume the presence
of RDF, RDFS, and OWL vocabularies in order to provide faster retrieval
of common statements. Figure 5-2 shows an excerpt of the structure of the
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Sesame RDF Framework’s MySQL-based RDF store, which is illustrative of
common approaches to implementing a triple store using a relational database.

Figure 5-2 Example relational database–based triple store implementation. This example
is based on the MySQL-based RDFS triple store distributed with the Sesame RDF Framework.

Two tables from the database are shown: triples and resources. The triples
table contains a list of every statement in the knowledgebase and whether
it is an explicit statement or an entailment. The resources table contains a
list of every instance of rdf:Resource that is in the knowledgebase and its
namespace and local name (which together make up its URI). Querying an
RDB-based triple store can be inefficient, requiring multiple joins and scans
of entire tables. When the ontology that describes the data in a triple store
is known a priori, performance can be boosted using column indices and
additional tables that are specific to the elements of that ontology.

Graph model–based RDF stores have been developed as a data structure
that more directly models the structure of RDF data and mitigates some of the
performance problems of relational model–based stores. Given a particular
statement, a graph-based store provides an efficient means to locate statements
that share the same resources (subject, predicate, or object) because by design
they are stored with a high degree of locality (that is, they are stored close
to each other). Common implementations of graph-based RDF stores use
statement lists that are linked such that every statement sharing the same
resource as its subject, predicate, or object is arranged in a continuous linked
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list, or they use special indexed data structures to link statements that are
adjacent (connected) in the RDF graph. These provide mechanisms for quickly
traversing every statement that contains a particular resource as its subject,
predicate, or object. This feature of the design is similar to the column
indices and additional tables of the RDB approach; however, the graph-based
implementation is more general purpose and does not require advanced
knowledge of the data that is to be stored within it.

Retrieving Information in a Knowledgebase

There are a number of ways to retrieve the information contained in a
knowledgebase. First, you can navigate the information using a browser that
allows you to walk the graph of interconnected resources as you would
traverse the World Wide Web. The Sesame RDF Framework is packaged with
one such browser, shown in Figure 5-3, which provides a way to browse from
resource to resource using lists of statements that have each resource as the
subject, predicate, or object of the statement. This is a straightforward method
of inspecting the contents of a knowledgebase for humans. It allows a user
to see how a resource or statement fits into the larger graph of RDF. This
can be extremely useful when little is known about the structure of the data
or when trying to debug a system, because the full context of every resource
can be assessed quickly. The concept of browsing a distributed graph of RDF
information is covered in more depth in Chapter 6, ‘‘Discovering Information.’’

Figure 5-3 The Sesame RDF Framework browser interface allows you to browse the
repository of resources using the statements in which they are contained.
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Browsing is less useful for automated systems because it is an unfocused
and imprecise approach to inspecting data. The example in Figure 5-3 shows
a knowledgebase that contains the example ontology from Chapter 4, ‘‘Incor-
porating Semantics.’’ The browser is currently showing all statements that
contain the resource http://example.org#Daisy. As you can see, the browser
shows a list of all statements that have that resource as the subject, predicate,
or object.

Most Semantic Web frameworks provide an API for programmatically
accessing and manipulating the contents of the knowledgebase; however,
there is no single, commonly accepted RDF/OWL API, which makes these
APIs hard to use as a universal access mechanism for knowledgebases. APIs are
used to integrate programmatically the various components of a framework
or to integrate a knowledgebase into an external application without relying
on the use of queries.

The final and most commonly used method of accessing the information in
a knowledgebase is via a query interface. The SPARQL Protocol and Query
Language is the recommended query language of the Semantic Web. SPARQL
is discussed at length in Chapter 6, but for now we’ll discuss it in terms
of the query-processing aspect of a knowledgebase. Query processors accept
SPARQL queries and then issue them against the underlying RDF store of the
knowledgebase to produce a result set in either RDF or tabular form. SPARQL
query processors can act as servers, accepting queries from remote clients,
or as part of an API. Either way, they take queries and produce result sets
reflecting the contents of the knowledgebase.

Realizing the Semantics of OWL
The main benefit of using OWL is the ability to define semantics that enrich
information. As discussed before, a knowledgebase needs to apply an infer-
ence component to interpret semantics and realize the enriched information.
Applications that perform inference are often referred to as reasoning engines,
or reasoners. A reasoning engine is a system that infers new information based
on the contents of a knowledgebase. This can be accomplished using rules
and a rule engine, triggers on a database or RDF store, decision trees, tableau
algorithms, or even programmatically using hard-coded business logic.

Many Semantic Web frameworks perform inference using rules-based
reasoning engines. These engines combine the assertions contained in a knowl-
edgebase with a set of logical rules in order to derive assertions or perform
actions. Rules comprise two parts, modeling an if-then statement. The first
part is the condition for the rule, and the second part is conclusion of the rule.
Rules can be used to express much of the semantics of OWL and as a tool for
users to express arbitrary relationships that cannot otherwise be modeled in
OWL. There are many different kinds of rules depending on the application.
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Some languages allow only conjunctive rules (A and B imply C), while others
allow disjunctive rules (A or B imply C). In addition, some languages allow
negation as failure (not A implies B) in rules, while others do not.

A rule establishes that any time a set of statements matches the conditions
of the rule, the statements in the conclusion of the rule are implicit in the
knowledgebase. As an example, consider the two rules listed here that capture
the semantics of the rdfs:subClassOf relationship between classes:

[IF]

?class1 rfds:subClassOf ?class2

AND

?instance rdf:type ?class1

[THEN]

?instance rdf:type ?class2

[IF]

?class2 rfds:subClassOf ?class1

AND

?class3 rfds:subClassOf ?class2

[THEN]

?class3 rdf:type ?class1

The first rule expresses that instances of a class are also members of the
superclasses of that class. The second rule expresses that rdfs:subClassOf is
a transitive property. This example uses a notional rule language to illustrate
the point. In the example, variables are identified using the ? symbol. Rules
and rule languages are discussed at length in Chapter 7, ‘‘Adding Rules,’’ with
special focus on the Semantic Web Rule Language (SWRL).

Often the inference capability is integrated directly into the knowledgebase
and is transparent to users. In some applications, inference is implemented as
an external component that is manually initiated and the entailments of which
are manually added to the knowledgebase. The latter approach can be used
as a method of mitigating the computational cost of performing inference if it
negatively impacts the overall performance of the knowledgebase.

There are two primary methods of executing inference in a rule-based
reasoner: forward chaining and backward chaining. Some systems combine the
two methods and are referred to as hybrid reasoners. In the following sections,
we review the major differences between forward and backward chaining
inference methods and explore the benefits and drawbacks to each approach.

Understanding Forward Chaining Inference

In forward chaining inference, all entailments (implied facts) are asserted
directly to the repository. Forward chaining occurs whenever new facts are
added and the entailed statements are immediately added to the knowledge-
base as part of the same operation. As a result, the knowledgebase always
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contains all explicitly asserted facts as well as all implicitly asserted facts. For-
ward chaining is named as such because inference is performed by working
forward from the data and rules in the knowledgebase toward the entailments
they imply. Figure 5-4 demonstrates the process of forward chaining inference.
Initially, the only explicit facts in the knowledgebase are Fact 1 and Fact 2.
Fact 1 entails the existence of Facts 3, 4, and 5. When Fact 6 is added, the
process of forward chaining will lead to the entailment of Facts 7, 8, 9, and
ultimately 10.

Entailments Entailments

Explicit Facts Explicit Facts

Fact 5

Fact 4

Fact 3

Fact 1 Fact 1

Fact 5 Fact 10

Fact 4 Fact 8 Fact 9

Fact 3 Fact 7

Fact 2 Fact 6Fact 2

Figure 5-4 Forward chaining derives all entailments as data is added to the knowledgebase.
The forward chaining process continues as long as there are more facts to be entailed.

Each time a new explicit fact is added, any new entailments are derived.
After the addition is complete, it requires no additional work to determine
whether the knowledgebase contains Fact 10 because it has already been
added to the knowledgebase through the forward-chaining process. However,
as this example illustrates, a lot of other facts have also been added to the
knowledgebase as well. If you care only about the existence of Fact 10, you’ve
made the knowledgebase larger than necessary and have spent extra time
inferring facts that you don’t need. Consider the following example.

@prefix ex: <http://example.org/>.

...

ex:hasOwner rdf:type owl:ObjectProperty.

ex:owns rdf:type owl:ObjectProperty.

#has owner is the inverse of owns

ex:hasOwner owl:inverseOf ex:owns.

ex:Daisy ex:hasOwner ex:Ryan
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We’ve defined that the property ex:hasOwner is the inverse of ex:owns. As
soon as you add the statements in the example to the knowledgebase, all
entailments will be derived and added as well. In this example, the state-
ments (ex:Daisy ex:hasOwner ex:Ryan) and (ex:hasOwner owl:inverseOf

ex:owns) imply the existence of the statement (ex:Ryan ex:owns ex:Daisy).
Thus, the forward-chaining method of inference will add the statement
(ex:Ryan ex:owns ex:Daisy) directly to the knowledgebase’s underlying
storage mechanism.

The forward-chaining method of inference increases storage size and over-
head associated with insertion and removal operations in an attempt to
improve retrieval performance in a knowledgebase. All of the implied facts
are derived and stored, even if none is ever needed or used. This translates
into not only wasted space but also wasted computation time spent deriving
the facts. In addition, the extra statements lead to a larger knowledgebase,
which can diminish the performance benefits of using forward chaining in
the first place. Despite these drawbacks, forward chaining is an approach
that’s optimized for retrieval. Since all entailments have been derived as data
and added to the store, no additional inference is necessary when performing
retrieval operations. In conditions where data expansion is less of an issue, or
where the contents of a store are relatively static, forward-chaining inference
can provide more efficient retrieval with little negative impact.

Using forward chaining can be problematic if you require the ability to
remove previously asserted statements. Because the system is continually
adding entailments to the knowledgebase as facts are asserted, the retraction
of a previously asserted statement could result in a situation in which a
statement exists in the knowledgebase even though it shouldn’t (that is, it was
previously asserted as an entailment of the fact that has since been retracted).
Revisiting the previous code snippet to remove the statement (ex:hasOwner
owl:inverseOf ex:owns) would mean that the entailed statement (ex:Ryan
ex:owns ex:Daisy) is no longer implied by the facts in the knowledgebase. This
issue is mitigated somewhat by the fact that knowledgebase implementations
are supposed to adhere to the open-world assumption of the Semantic Web
and not to remove previously asserted facts; nevertheless, as we discussed in
Chapter 4, ‘‘Incorporating Semantics,’’ this adherence is not always practical
or even desirable.

The issue introduced here is critical to the task of truth maintenance in knowl-
edgebases. Truth maintenance involves assuring that as facts are asserted and
retracted, the existence of all entailed facts is still valid. Improper truth mainte-
nance can quickly lead to an inconsistent knowledgebase that includes invalid
entailments or contradictory information. Figure 5-5 illustrates what happens
during the process of truth maintenance when a fact is removed. In this case,
Fact 6 is removed, which leads the removal of all of the facts that were origi-
nally entailed as a result of its addition. After the removal, the knowledgebase
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no longer contains any of the facts that were entailed by the addition of Fact
6. This example is a simplification of the many situations and conditions that
have to be considered when removing facts from a knowledgebase. Multiple
facts may cause the same entailments, and removed facts may be entailments
themselves. Because of the complexity of the interrelations between explicit
and implicit facts in the knowledgebase, it can be a very complicated task to
keep track of it all so that a fact can be removed properly.

Entailments

Explicit Facts

Fact 5

Fact 4

Fact 3

Fact 1 Fact 2

Entailments

Explicit Facts

Fact 1

Fact 5 Fact 10

Fact 4 Fact 8 Fact 9

Fact 3 Fact 7

Fact 2 Fact 6

×

× ×

×

×

Figure 5-5 As facts are added, new facts are entailed. When a fact is removed, all facts that
are no longer implied must be removed. Removing Fact 6 leads the removal of Facts 7, 8,
9, and 10.

Although the concept of truth maintenance is reasonably straightforward,
the challenge lies in implementing it in a manner that provides desirable
performance characteristics. Most knowledgebase solutions either don’t per-
form truth maintenance or they take a very simple approach and purge all
entailed facts any time one or more facts are removed. When entailments
are purged, the knowledgebase must then re-perform forward chaining over
the entire knowledgebase to derive all entailments. The drawback to not per-
forming truth maintenance is that the knowledgebase may contain facts that
it shouldn’t, which may lead to unknown consequences. The drawback to
purging all entailments is that for any knowledgebase of significant size or
number of rules, the overhead to re-perform entailment is significant.

Alternate approaches to truth maintenance have been proposed that attempt
to maintain a record of the entailment dependencies between facts so that
upon removal, the reasoner can quickly identify and remove all facts that
were entailed only by the existence of the fact that is to be removed. This
approach gets complicated quickly because implicit facts can be entailed by
complex reasoning chains involving numerous facts and rules. In addition,
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facts may exist both explicitly and implicitly. Maintaining adequate records
can introduce unwanted overhead associated with record keeping, bloat the
size of a knowledgebase, and introduce a complex process of ‘‘unwinding’’
the entailments when facts are removed.

Understanding Backward Chaining Inference

Backward chaining is the other primary method of executing inference in a
reasoning engine. In backward chaining, reasoning is performed by attempting
to derive the conditions of the goal set of facts (the condition of a rule or the
pattern of a query) by applying the logic of the system backwards until
the conditions can be satisfied by explicit facts in the knowledgebase. The
process is depicted in Figure 5-6. Once again, the goal is to determine if the
knowledgebase contains Fact 10. The process of backward-chaining inference
determines whether Fact 10 can be derived from the explicit facts that are
in the knowledgebase. It does this by determining what facts lead to the
entailment of Fact 10. In this cast, Fact 8 implies Fact 10. Now the reasoning
process must determine whether Fact 8 can be derived. Fact 8 is implied by
the combination of Fact 2 and Fact 7. Fact 2 already explicitly exists, so the
process must determine whether Fact 7 can be derived. Fact 7 is implied by
Fact 3, which is explicitly in the knowledgebase. Thus, Fact 10 is contained in
the knowledgebase. If any of those facts had been missing along the way, it
would have indicated that Fact 10 is not in the knowledgebase.

Entailments

Explicit Facts

Fact 1

Fact 10

Fact 8

Fact 7

Fact 2 Fact 3

Figure 5-6 Backward chaining uses entailment to expand queries as a method to deter-
mine whether or not queries can be satisfied. When the query is complete, the entailed
information is not persisted in the knowledgebase.

Backward-chaining inference is attractive because entailments are made as
necessary to verify whether or not certain facts exist. It avoids the unnecessary
expansion of facts in a knowledgebase and does not add any overhead to the
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operations of the insertion or removal of statements. Once facts are derived
through backward chaining, they are not persisted in the knowledgebase
as they are in forward chaining (although they may be cached to improve
performance). Depending on the use case in which it is applied, backward
chaining may be more efficient from a computation and storage perspective
because inference is performed only as needed and unused statements are
not being stored. One major advantage of backward chaining is that it vastly
simplifies truth maintenance because only explicit statements are persisted in
the knowledgebase, and the removal of an already asserted statement has no
impact on the other statements in the knowledgebase.

There are drawbacks to backward chaining as well. It trades insertion and
removal overhead for access overhead. This means that access to information
in the knowledgebase using an API or query interface involves more com-
putation and cost because it is then that entailments are derived. In many
knowledgebase systems, query time is one of the most critical performance
metrics. Without caching, a backward-chaining system may be very inefficient
if it has to satisfy the same queries over and over because it will perform the
same process of entailment repeatedly.

Choosing the Right Inference Method

Choosing the right inference method is often a matter of assessing require-
ments and constraints and determining which method works the best for a
given application. Most frameworks provide forward-chaining knowledge-
bases because they are easier to implement, and the additional size and
computational requirements during insertion and removal operations are
acceptable. Forward chaining prioritizes query performance over insertion
and removal performance, and in most applications, queries are the most
common operation performed.

Backward chaining is often desirable when ontologies are volatile or when
knowledgebase modifications (including statement removals) are frequent.
This is because backward chaining does not do anything to the underlying
stored information, and any modifications to that information can be made
without regard for the inference method. Backward chaining can be a necessity
when working with distributed reasoning systems in which no centralized
knowledgebase exists. In these situations, there is no knowledgebase in which
forward chaining can take place and entailments can be stored, so queries must
be expanded and distributed using a backward chaining–based approach.

Common Frameworks and Components
There are a number of mature, open-source Semantic Web frameworks
available today. Arguably the most widely used are the Jena Semantic Web
Framework (http://jena.sourceforge.net) and Sesame RDF Framework
(http://www.openrdf.org). Each of these is written in Java and includes an
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API as well as a number of plug-ins and tools for working with RDF and
OWL. Sesame can be directly deployed as a servlet in a servlet container such
as Apache Tomcat (Apache Tomcat is an open-source servlet container and
can be found at http://tomcat.apache.org), communicating via HTTP; and
Jena can be stood up as a server by combining it with a tool like the Joseki
SPARQL Server for Jena (http://www.joseki.org).

We use Jena in all of the programming examples included in this book for a
number of reasons. First, Jena is one of the most commonly used frameworks
available. Second, we use it in many of our own Semantic Web projects. Third,
it’s free—and it’s written for Java, which is also free (and who doesn’t like free
stuff?). For the sake of fairness, Sesame is also an excellent, commonly used,
free framework that we use in many of our own projects and that would likely
suit your needs. For consistency’s sake, however, we decided to choose only
one framework to help you get familiar with Semantic Web programming.
This spares you from having to master the nuanced details of a number of
different tools and applications. We’ve mentioned Sesame and Jena, but there
are many other open source frameworks out there, including those listed in
Table 5-1.

Table 5-1 Frameworks for Programming in the Semantic Web

FRAMEWORK DESCRIPTION

4Suite 4Suite is an open-source XML and RDF processing library for
Python. More information about the project can be found at
http://www.4suite.org.

Jena Widely used Semantic Web framework for Java. Provides a
SPARQL interface, RDF and OWL APIs, and inference support.
Provides multiple storage and reasoning mechanisms and also
allows the integration of custom mechanisms. More
information about the Jena Semantic Web Framework can be
found at http://jena.sourceforge.net.

Sesame Widely used RDF framework and server. Provides a SPARQL
interface and an HTTP server interface. Is packaged with
multiple storage and reasoning mechanisms and also allows
the integration of custom mechanisms. More information
about the Sesame RDF Framework can be found at
http://www.openrdf.org.

OWL API OWL API and implementation for Java. Provides OWL API that
is built on the functional syntax of OWL 2 and contains a
common interface for many reasoners. More information
about the OWL API can be found at
http://owlapi.sourceforge.net.

(continued)
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Table 5-1 (continued)

FRAMEWORK DESCRIPTION

RAP RDF API RAP is an open-source RDF API and software suite for storing,
querying, and manipulating RDF in PHP. The project can be
found at http://sourceforge.net/projects/dfapi-php.

Redland Collection of RDF libraries for C, with bindings for various other
languages. Provides RDF API, parsers, and query interfaces.
More information about Redland can be found at
http://librdf.org.

LinqToRDF Semantic Web framework for .NET built on the Microsoft
Language-Integrated Query (LINQ) Framework
(language-independent query and data processing system).
More information about the LinqToRDF project can be found at
http://code.google.com/p/linqtordf.

The OWL API is an open-source project that’s developing a Java API for
programming with OWL 2. Redland is a collection of RDF libraries written in
C with language bindings for various other languages, including Ruby, PHP,
Python, and Perl. Finally, LinqToRDF is a smaller project aimed at developing
a Semantic Web/RDF framework for the Microsoft .NET Framework based on
the Language-Integrated Query (LINQ) package for .NET.

Almost all of the frameworks discussed are packaged with their own
RDF store implementations, retrieval components, and inference engines, and
they also allow the integration of custom mechanisms. For this purpose,
there are a number of projects aimed solely at providing high-performance
components that can be integrated into these frameworks. The following
subsections present some of the more common and useful RDF stores, retrieval
components, and reasoners.

RDF Store Implementations

Many of the Semantic Web frameworks (including Jena and Sesame) allow
you to plug in your own RDF store implementation. There are a number of
RDF stores to pick from. The following is a short compilation of the most
widely used and mature projects:

AllegroGraph: This RDF store is available in a number of forms
ranging from a free scaled-down version to a full licensable version.
AllegroGraph is available in both Java and Lisp implementations
and provides a SPARQL interface and reasoning based on RDFS.
AllegroGraph can be found at http://agraph.franz.com/allegrograph.
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Mulgara: This is an open-source, Java RDF store with a SPARQL
query processor that replaces the project previously known as
Kowari. Mulgara can be downloaded at http://www.mulgara.org.

OpenLink Virtuoso: This provides both open-source and com-
mercial versions of an RDB-based RDF store. It supports
embedding SPARQL into SQL as a method of accessing RDF
data that is stored in the knowledgebase. More information
can be found at http://virtuoso.openlinksw.com.

Oracle 11g: Oracle first introduced support for RDF and rules in
Oracle Database 10g Release 2. The 11g release includes support for
a subset of OWL, transactions, and security. Limited information is
available about its performance and scalability. Oracle 11g information
can be found at the Oracle website: http://www.oracle.com.

OWLIM: This Java-based repository is packaged as a Sesame Storage
and Inference Layer (SAIL) and supports inference using RDFS
and a subset of OWL. Two versions of OWLIM are available. The
first is an open-source, in-memory model with a persistence mech-
anism and is called Swift OWLIM. A commercial version called
Big OWLIM is also available under license. Big OWLIM uses a
proprietary file-based storage mechanism that is more scalable
than the Swift OWLIM version. Information about both versions
of OWLIM can be found at http://www.ontotext.com/owlim.

Parliament: This is a C++-based RDF store implementation that utilizes
efficient disk-based storage and limited inference capabilities. Jena
and Sesame integration packages are available. At the time of this
writing, Parliament is en route to becoming an open-source RDF store.
Information about Parliament can found at http://asio.bbn.com.
(Some of the authors of this book work for BBN Technologies.)

Retrieval Components
Most Semantic Web frameworks, such as Jena and Sesame, provide a SPARQL
endpoint as well as APIs for accessing the information in the knowledgebase.
There are not a lot of standalone components that provide retrieval for
Semantic Web frameworks. One of the few worth mentioning is the Joseki
project (http://www.joseki.org), which provides an HTTP servlet-based
SPARQL endpoint for Jena. In many of our distributed Semantic Web projects,
we use either Sesame or Jena combined with Joseki as an HTTP-based SPARQL
endpoint.

Reasoning Engines
FaCT++: An open-source, C++-based reasoner supporting a

large subset of OWL DL, FaCT++ can be found at http://owl.man.
ac.uk/factplusplus.
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Hermit: This Java-based OWL reasoner is based on a new tableau
reasoning algorithm. It can be integrated into Protégé and Java
applications using the OWL API. Downloads and informa-
tion can be found at http://www.hermit-reasoner.com.

KAON2: This is a Java-based framework for working and
reasoning with OWL DL ontologies. It supports reasoning
over a large subset of OWL DL. Documentation and down-
loads can be found at http://kaon2.semanticweb.org.

Pellet: This is an open-source, Java-based OWL DL reasoning
engine that supports a majority of the constructs of OWL, including
those introduced in OWL 2. Pellet is developed and commercially
supported by Clark and Parsia. We use Pellet as our reasoner
of choice throughout the examples in this book because it is a
mature, well-supported reasoner that supports the latest features of
OWL. Pellet can be downloaded at http://pellet.owldl.com.

RacerPro: This commercially available reasoner supports a
large subset of OWL DL. More information about Racer-
Pro can be found at http://agraph.franz.com/racer.

Vampire: This award-winning, commercially licensable, first-order
logic theorem prover has been the subject of investigations looking
into its applicability as an OWL-DL reasoner (Using Vampire to Reason
with OWL, Tsarkov, Riazanov, Bechhofer, and Horrocks, University of
Manchester, 2004).

Knowledgebase Performance
Knowledgebases vary in form from local, in-memory solutions with limited
inference support to distributed, server-based solutions supporting the full
inference of OWL DL. A knowledgebase lies at the center of most Semantic
Web applications. Thus, understanding the performance profile of that knowl-
edgebase and matching performance expectations with the components in use
is a critical design consideration.

A number of metrics are useful for measuring the performance of a knowl-
edgebase. Two of the most commonly used are query duration and load time.
Query duration is the amount of time it takes for a knowledgebase to return the
result set for a particular query. Load time is the amount of time it takes to add
some information to the knowledgebase, including any entailments that occur
as part of this operation. Other useful metrics include the supported level
of reasoning, reasoning correctness (soundness and completeness), memory
footprint, disk space requirements, and deletion duration. Trends observed
in these metrics over varying knowledgebase sizes and concurrent loads all
provide useful insight into the overall performance profile.

Knowledgebase performance and scalability are areas of concern for devel-
opers and researchers alike. Current technologies are relatively new and
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immature in comparison to relational databases, which have been in devel-
opment for over 30 years. To make matters worse, knowledgebases usually
do more than traditional databases, introducing a much more flexible and
inference-based knowledge model. To cope with these conditions, it is often
necessary to take steps to manage the scale of the knowledgebase and to
mitigate performance and scalability issues that may emerge.

LEHIGH UNIVERSITY BENCHMARK

To track the progression of knowledgebase performance and to benchmark and
compare various implementations, the Semantic Web and Agent Technologies
Lab at Lehigh University developed the Lehigh University Benchmark (LUBM).
The benchmark was quickly adopted by numerous projects as a way of
advertising performance gains and has since become the de facto standard for
OWL knowledgebase system benchmarking.

The benchmark system includes a test harness, a data generator, and a set of
sample queries. The data generator is used to create data sets of fixed sizes
based on an ontology included with the benchmark. The sample queries vary in
complexity and result size. The test harness runs each query against each data
set and gathers a set of metrics designed to assess various aspects of the
completeness and performance of the knowledgebase. The primary metrics of
the benchmark include data set load time and query response time. In addition,
the benchmark performs checks to verify that the results of queries have
returned the expected results, verifying the soundness and completeness of the
inference performed by each knowledgebase.

Even with the frameworks available and the amount of research going into
knowledgebase development, implementing the full specification of OWL in
a Semantic Web application is not feasible. The full, unrestricted specification
of OWL (referred to as OWL Full) is not decidable; that is, there is no
algorithm capable of providing complete inference over a complex OWL Full
ontology and a large knowledgebase. To ease the burden on Semantic Web
tools developers, OWL contains a number of profiles, or subsets of the full
language, that give up some expressive power in exchange for more attractive
and feasible computational characteristics. The next section introduces each
profile and discusses when it is appropriate to use each.

Exploring the Profiles of OWL

Both the original OWL specification and OWL 2 provide profiles, or sublan-
guages of the language that give up some expressiveness in exchange for
computational efficiency. These profiles introduce a combination of modified
or restricted syntax and nonstructural restrictions on the use of OWL. In the
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original OWL specification, there were three species of OWL: OWL Full, OWL
DL, and OWL Lite. OWL Full was the full, unrestricted OWL specification.
OWL DL introduced a number of restrictions on the use of OWL Full, including
the separation of classes and individuals. These restrictions were designed to
make OWL DL decidable. OWL Lite was essentially OWL DL with a subset of
its language elements.

The intention of introducing OWL Lite was to provide application and
tool developers with a development target, or starting point for support-
ing the features of OWL 1. Unfortunately, OWL Lite was regarded mostly
as a failure because it eliminated too many of the useful features of OWL
1 without introducing enough of a computational benefit to make the
reduced features attractive. OWL DL was more successful; however, the
fact that it is decidable does not guarantee that even correct implementations
will have desirable performance when dealing with nontrivial knowledge-
bases. Knowing that a reasoning algorithm will, theoretically, finish is less
useful if it won’t do so before the heat death of the universe (http://
en.wikipedia.org/wiki/Heat death of the universe). This is not to say that
OWL DL reasoning often takes eons to complete (the heat death reference is
a slight exaggeration); rather, it is to assert the point that decidability is not
necessarily in sync with practicality. OWL Full was introduced primarily for
compatibility with RDF and RDF Schema.

OWL Full and OWL DL
OWL Full is not a sublanguage of OWL; rather, it is the full OWL language.
So far, our discussion of OWL has been about OWL Full. It is a pure extension
of RDF. As a result, every RDF document is a valid OWL Full document, and
every OWL Full document is a valid RDF document. The important point to
make here is that OWL Full maintains the ability to say anything about anything.
With the flexibility comes a tradeoff in computational efficiency. As we have
said before, OWL Full is not decidable. There are no known algorithms that
can produce all the entailments of the semantics of a complex OWL Full
knowledgebase.

OWL DL is so named because it provides many of the capabilities of
description logic (hence, OWL DL), an important subset of first-order logic. It
contains the entire vocabulary of OWL Full but introduces the restriction that
the semantics of OWL DL cannot be applied to an RDF document that treats
a URI as both an individual and a class or property. This and some additional
restrictions make OWL DL decidable. As we mentioned before, decidability
provides only that there exists an algorithm that provides complete reasoning.
It does not say anything about the performance of such an algorithm or
whether it will complete in an acceptable or realistic amount of time. As we
progress in this book, we may not adhere to any particular profile of OWL;
however, we will always stay within the restrictions of OWL DL.
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The Profiles of OWL
The main purpose of an OWL profile is to produce subsets of OWL that
trade some expressivity for better computational characteristics for tools and
reasoners. The profiles were developed with specific user communities and
implementation technologies in mind. At the time of this writing, there are
three standardized profiles of OWL: OWL EL, OWL QL, and OWL RL. Each
profile is defined by restricting OWL DL and is covered in following sections.

N O T E It is important to understand the implications of OWL profiles. You will
rarely, if ever, work with OWL Full. OWL DL and the OWL profiles are what make it
feasible to implement and work with OWL.

OWL EL

The OWL EL profile is designed to provide polynomial-time computation for
determining the consistency of an ontology and mapping individuals to
classes. That is, the relationship between ontology size and the time required
to perform the operation can be represented by the formula f(x)=xa. The
purpose of this profile is to provide the expressive features of OWL that
many existing large-scale ontologies (from various industries) require while
also eliminating unnecessary features. Features are pruned to reduce the
computational complexity of many common reasoning tasks. The ontologies
for which this profile is designed tend to rely heavily on huge collections of
classes that are organized taxonomically.

OWL EL is a syntactic restriction on OWL DL. We will list some of the more
significant allowed and disallowed elements in this subsection; however, there
are other restrictions on the use of OWL EL that are not covered in this section.
You can review the full list of features that are included and not included in
this and the other profiles in the OWL 2 Profiles document located on the W3C
OWL website located at http://www.w3.org/2007/OWL/wiki/Profiles.

Class description is limited to the following methods:

Class declarations

Subclass-of relationships

Intersection-of set operations

Some-values-from, has-value, and self-exists restrictions

Enumerations containing exactly one individual

Disallowed class descriptions include the following:

Cardinality and all-values-from restrictions

Union-of, disjoint union, and complement-of set operations
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Disallowed property descriptions include the following methods:

Disjoint and inverse property relationships

Irreflexive, functional, symmetric, and asymmetric property types

While the restrictions of OWL EL may seem limiting, carefully consider
which features of OWL you will need and how they balance with your
performance requirements. Often you will find that there is a small subset
of the features of OWL that are most important to your requirements, and
the others can be sacrificed in order to achieve better performance. OWL EL
is ideal for users who want to classify instances using a rich taxonomy and
are willing to sacrifice some expressivity when it comes to properties. Despite
the limitations on restrictions, OWL EL supports property domain and range
descriptions, which can be used to regain some of the functionality of those
restrictions.

OWL QL

The OWL QL profile is designed to enable the satisfiability of conjunctive
queries in logspace with respect to the number of assertions in the knowledge-
base that is being queried. That is, the relationship between knowledgebase
size and the time required to perform the operation can be represented by the
function f(x) = log(a). As with OWL EL, this profile provides polynomial-time
computation for determining the consistency of an ontology and mapping
individuals to classes.

This profile was based on work involving the virtual integration of databases.
The idea was to develop a profile of OWL that allows for efficient query
expansion such that a query can be translated, expanded, and issued directly
against the underlying storage mechanism, whether it is SQL, RDF, or any
other implementation. In this way, the implementation of QL semantics is
conceptually similar to the process of backwards chaining presented earlier in
this chapter. As a result of the focus toward database integration, the modeling
capabilities of OWL QL are similar to that of the Unified Modeling Language
(UML) or Entity-Relationship (ER) models.

OWL QL restricts how subclass relationships can be constructed by limiting
the ways that you can define the superclass of the relationship. Specifically,
subclass axioms can use only the following language elements:

Explicitly defined classes

Some-values-from restrictions

Complement-of and intersection-of set operations

Disallowed class and property descriptions include:

Cardinality, has-value, and all-values-from restrictions
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Union-of set operations

Property chains

Transitive, reflexive, irreflexive, asymmetric property types

Inverse-functional property types

OWL QL is ideal for users who want to model the information contained in
existing databases. These use cases include database exposure and integration
efforts. Once again, we haven’t necessarily covered all of the restrictions that
are present in OWL QL. For complete coverage of the profile, refer to the OWL
2 Profiles document on the W3C OWL website.

OWL RL

The OWL RL profile is designed to be as expressive as possible while allowing
implementation using rules and a rule-processing system. Part of the design
of OWL RL is that it only requires the rule-processing system to support
conjunctive rules. Conjunctive rules are those that have only axioms that are
connected using logical AND. A sample conjunctive rule is ‘‘IF A AND B
THEN C AND D.’’ The restrictions of the profile eliminate the need for a
reasoner to infer the existence of individuals that are not already known in the
system, keeping reasoning deterministic.

Like the other profiles, OWL RL makes syntactic restrictions on OWL DL.
Most of the changes are related to how and where class expressions can be
used. Classes defined as the subclass in an expression can only be described
using the following methods:

Explicit class definition

One-of, some-values-from, and has-value restrictions

Intersection-of and union-of set operations

Classes defined as the superclass in an expression can only be described
using the following methods:

Explicit class definition

All-values-from and has-value restrictions

Max-cardinality restrictions with a value of zero or one

Intersection-of set operations

Finally, classes defined as the equivalent class in an expression can only be
described using these methods:

Has-value restrictions

Intersection-of set operations
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Demonstrating OWL Inference

Now that you’ve learned about ontologies, knowledgebases, and the role that
inference plays in realizing the semantics of OWL, it’s time to put everything
together into a working example. This section presents a hands-on example of
enabling various levels of inference in a knowledgebase containing a simple
OWL ontology. The knowledgebase used in this example is a Jena model, and
the ontology is the example from Chapter 4 involving humans and canines.
There are three levels of inference to consider: no inference, RDFS, and the
OWL inference provided by Pellet. We will first review the ontology and the
application, and then we’ll review the results of running the application at
each inference level, illustrating the differences between the information in the
resulting knowledge models. This example can be downloaded in its entirety
from the book’s website.

The Ontology
First let us review the ontology we will be using for this example.

@prefix ex: <http://example.org#>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix owl: <http://www.w3.org/2002/07/owl#>.

ex:Mammal rdf:type owl:Class.

ex:Human rdf:type owl:Class;

rdfs:subClassOf ex:Mammal.

ex:Canine rdf:type owl:Class;

rdfs:subClassOf ex:Mammal;

owl:equivalentClass [

rdf:type owl:Restriction;

owl:onProperty ex:breed;

owl:someValuesFrom ex:Breed

].

ex:PetOfRyan rdf:type owl:Class;

owl:intersectionOf (

ex:Mammal

[

rdf:type owl:Restriction;

owl:onProperty ex:hasOwner;

owl:hasValue ex:Ryan

]

).
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ex:Breed rdf:type owl:Class.

ex:LargeBreed rdf:type owl:Class;

rdfs:subClassOf ex:Breed.

ex:SmallBreed rdf:type owl:Class;

rdfs:subClassOf ex:Breed.

ex:name rdf:type owl:DatatypeProperty.

ex:registeredName rdf:type owl:DatatypeProperty;

rdfs:subPropertyOf ex:name.

ex:breed rdf:type owl:ObjectProperty.

ex:hasOwner rdf:type owl:ObjectProperty.

ex:owns rdf:type owl:ObjectProperty;

owl:inverseOf ex:hasOwner.

ex:GoldenRetriever rdf:type ex:LargeBreed.

ex:Chihuahua rdf:type ex:SmallBreed.

ex:Ryan rdf:type ex:Human;

ex:name “Ryan Blace“;

ex:owns ex:Daisy.

ex:Daisy rdf:type ex:Canine;

ex:name “Daisy“;

ex:registeredName “Morning Daisy Bathed in Sunshine“;

ex:breed ex:GoldenRetriever.

ex:Amber rdf:type ex:Mammal;

ex:name “Amber“;

ex:breed ex:GoldenRetriever.

This example ontology contains elements of RDFS and OWL. No specific
profile is adhered to; however, the ontology stays within OWL DL. In this
example, we’ve defined a number of classes and a few properties, as well
as some individuals (which normally wouldn’t be included in an ontology).
To keep the ontology succinct, no labels or comments are included. First
we include simple class definitions for ex:Mammal and ex:Human, which is a
subclass of ex:Mammal.

ex:Mammal rdf:type owl:Class.

ex:Human rdf:type owl:Class;

rdfs:subClassOf ex:Mammal.

Then we define the class ex:Canineas a subclass of ex:Mammaland equivalent
to the class of instances for which there is at least one ex:breed property with
a value that is an instance of the class ex:Breed.

ex:Canine rdf:type owl:Class;

rdfs:subClassOf ex:Mammal;



Chapter 5 ■ Modeling Knowledge in the Real World 165

owl:equivalentClass [

rdf:type owl:Restriction;

owl:onProperty ex:breed;

owl:someValuesFrom ex:Breed

].

Next, ex:PetOfRyan is defined using the intersection-of set operator. The
class definition states that an instance is a member of the class if it is an instance
of the class ex:Mammal and it has a property ex:hasOwner that has a value of
ex:Ryan.

ex:PetOfRyan rdf:type owl:Class;

owl:intersectionOf (

ex:Mammal

[

rdf:type owl:Restriction;

owl:onProperty ex:hasOwner;

owl:hasValue ex:Ryan

]

).

After that, we define a simple hierarchy of breed classes, ex:Breed, and two
subclasses, ex:LargeBreed and ex:SmallBreed. Then we define a datatype
property, ex:name, and three object properties: ex:breed, ex:hasOwner, and
ex:owns. The only really interesting things here are that we’ve defined
ex:registeredName to be a subproperty of ex:name and ex:owns to be the
inverse of ex:hasOwner.

The final part of this ontology defines a number of individuals. The first
two are ex:GoldenRetriever, which is an instance of ex:LargeBreed, and
ex:Chihuahua, which is an instance of ex:SmallBreed. The last three are
ex:Ryan, ex:Daisy, and ex:Amber.

The Example Application
We will take a look at the application we are going to use to demonstrate
the various inference levels in action on the knowledge model we just went
through. The purpose of this example is to illustrate the effect of various
inference levels on a knowledge model but not to teach you how to program
in Java or how to use Jena. Therefore, we’ll explain the relevant features of
Jena enough to communicate specific pieces of the application but not much
more. We explore Jena in detail later in the book.

The source code for the example application is shown in the following
snippet, abridged to make it easier to read and understand. The website
accompanying this book contains the full, unabridged source code for this
example. We’ve omitted package and import statements as well as most of
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the error checking and validation code. The application takes four parameters:
an input file, the input file format (N3, RDF/XML, N-Triple, or Turtle), an
output file, and the inference level (none, rdfs, or owl). When it runs, it loads
the input file into a Jena model and applies the specified inference level to
the knowledge model. Then it prints a summary of each individual and those
statements in the model that describe it.

public class InferenceExample

{

public static void main(String[] args)

{

String inputFileName = args[0];

String inputFileFormat = args[1];

String outputFileName = args[2];

String reasoningLevel = args[3];

FileInputStream inputStream = null;

PrintWriter writer = null;

try

{

inputStream = new FileInputStream(inputFileName);

} catch (FileNotFoundException e) {}

try

{

writer = new PrintWriter(outputFileName);

} catch (FileNotFoundException e) {}

//create the jena default model

OntModel model = null;

if(“none“.equals(reasoningLevel.toLowerCase()))

{

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM);

}

else if(“rdfs“.equals(reasoningLevel.toLowerCase()))

{

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM RDFS INF);

}

else if(“owl“.equals(reasoningLevel.toLowerCase()))

{

Reasoner reasoner =

PelletReasonerFactory.theInstance().create();

Model infModel = ModelFactory.createInfModel(

reasoner, ModelFactory.createDefaultModel());

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM, infModel);

}



Chapter 5 ■ Modeling Knowledge in the Real World 167

//load the facts into the model

model.read(inputStream, null, inputFileFormat);

//Iterate over the individuals, print statements about them

ExtendedIterator iIndividuals = model.listIndividuals();

while(iIndividuals.hasNext())

{

Individual i = (Individual)iIndividuals.next();

printIndividual(i, writer);

}

iIndividuals.close();

writer.close();

model.close();

}

public static void printIndividual(

Individual i, PrintWriter writer)

{

//print the local name of the individual (to keep it terse)

writer.println(“Individual: “ + i.getLocalName());

//print the statements about this individual

StmtIterator iProperties = i.listProperties();

while(iProperties.hasNext())

{

Statement s = (Statement)iProperties.next();

writer.println(“ “ + s.getPredicate().getLocalName()

+ “ : “ + s.getObject().toString());

}

iProperties.close();

writer.println();

}

}

This application takes an input ontology and outputs the individuals in the
knowledge model, including any statements about them, after one of the three
inference levels has been applied. The first thing the application does is extract
the parameters from the arguments to the main() method. Next, it creates an
input stream for the input file and a print writer for the output file. Once all
the setup is complete, the interesting part begins. Depending on the inference
mode, the application creates the Jena OntModel in one of three ways, each
explained shortly.

The code snipped here shows that in no inference mode ("none"), the
program creates a basic ontology model using the OWL DL MEM OntModelSpec.
This specifies that Jena should load the RDF, RDFS, and OWL ontologies but
perform no inference in the model.
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if(“none“.equals(reasoningLevel.toLowerCase()))

{

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM);

}

As the next snippet shows, the model is created using the OWL DL MEM

RDFS INF OntModelSpec when it is run in RDFS mode. This model will also be
loaded with the RDF, RDFS, and OWL ontologies; however, it will perform
RDFS inference over the model using Jena’s internal reasoning engine. This
means that inference should be performed over all elements of the RDFS
vocabulary (property and class hierarchies, domain, range, and so on).

else if(“rdfs“.equals(reasoningLevel.toLowerCase()))

{

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM RDFS INF);

}

The final mode, OWL, involves more setup than the previous two modes.
First, we create a new Reasoner instance using the PelletReasonerFactory.
Then, we create a Jena inference model using the Jena ModelFactory, providing
as parameters the Pellet reasoner and a newly created, empty Jena model.
Finally, we create our actual Jena OntModel, which wraps the Pellet inference
model we just created and once again loads the RDF, RDFS, and OWL
ontologies. The result is a Jena ontology model that will perform inference
using the Pellet OWL reasoner.

else if(“owl“.equals(reasoningLevel.toLowerCase()))

{

Reasoner reasoner =

PelletReasonerFactory.theInstance().create();

Model infModel = ModelFactory.createInfModel(

reasoner, ModelFactory.createDefaultModel());

model = ModelFactory.createOntologyModel(

OntModelSpec.OWL DL MEM, infModel);

}

Finally, after creating the model in one of the three ways, we load the ontol-
ogy into the model using model.read(...). Inference occurs automatically, so
no explicit action has to be taken to ensure that entailments are derived. In the
following snippet, we read the ontology from an input stream containing the
ontology, specify no base namespace for the ontology (the second parameter,
which is null), and pass in the string representing the input file format—in
our case, Turtle.
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model.read(inputStream, null, inputFileFormat);

The final part of the application involves iterating over the list of all
individuals in the model, and printing them and all statements for which they
are the subject in a summary form to the output file.

The Results
Now we’re ready to run the application in each of the three modes, observing
and juxtaposing the consequences of each inference level on the information
in the knowledge model.

Performing No Inference

Running the application with no inference over the example ontology results
in the output file contained in the following example. Resources in the output
file, other than those that are the objects of statements, are abbreviated
by the application to make it easier to read. With no inference, we expect
to see exactly the set of individuals and statements that are expressed in the
example ontology. No additional statements are present, because no additional
statements are being inferred.

Individual: Chihuahua

type : http://example.org#SmallBreed

Individual: GoldenRetriever

type : http://example.org#LargeBreed

Individual: Daisy

breed : http://example.org#GoldenRetriever

registeredName : Morning Daisy Bathed in Sunshine

name : Daisy

type : http://example.org#Canine

Individual: Ryan

owns : http://example.org#Daisy

name : Ryan Blace

type : http://example.org#Human

Individual: Amber

breed : http://example.org#GoldenRetriever

name : Amber

type : http://example.org#Mammal

The result is as expected. The output contains only the information that is
explicitly contained in the ontology. No new statements are inferred as a result
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of the semantics of the ontology. This example alone is not very interesting, but
it provides a baseline to which we can compare the RDFS and OWL inference
modes.

Performing RDFS Inference

Now we will look at the results of running the same application, only in RDFS
inference mode. We expect to see inference as a result of the RDFS semantics
in our ontology. In this case, subclass and subproperty relationships will take
effect. The file generated by running the application in RDFS mode is shown
in the following code. Statements that are new when compared to the results
in the preceding example are shown in bold to make them easier to identify.

Individual: Chihuahua

type : http://example.org#SmallBreed

type : http://example.org#Breed

Individual: GoldenRetriever

type : http://example.org#LargeBreed

type : http://example.org#Breed

Individual: Daisy

breed : http://example.org#GoldenRetriever

registeredName : Morning Daisy Bathed in Sunshine

name : Daisy

type : http://example.org#Canine

name : Morning Daisy Bathed in Sunshine

type : http://example.org#Mammal

Individual: Ryan

owns : http://example.org#Daisy

name : Ryan Blace

type : http://example.org#Human

type : http://example.org#Mammal

Individual: Amber

breed : http://example.org#GoldenRetriever

name : Amber

type : http://example.org#Mammal

Immediately you can see that there is a difference between this output file
and the one generated with no inference. The output includes inferences that
occur as a result of the taxonomic relationships between classes and properties.
These include the facts that a Chihuahua and Golden Retriever are also breeds,
that Daisy’s registered name is also a name, that Daisy is not only a canine but
also a mammal, and that Ryan is not only a human but also a mammal. These
are all the result of the semantics of constructs from the RDFS namespace.
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Some of these entailments occur because a subclass relationship causes an
instance to become a member of a superclass. The others are inferred because
a subproperty relationship causes a new property to be added to an instance.

Since we are providing only RDFS inference, we still don’t see any new
information entailed by OWL semantics, including the fact that Amber is
a canine or that the inverse relationship that exists between ex:owns and
ex:hasOwner means that Daisy has the owner Ryan.

Performing OWL Inference

The final example we’ll take a look at involves applying the full set of OWL
semantics that Pellet supports to the knowledge model. Here we should see
all implicit statements, as Pellet supports all of the OWL and RDFS constructs
that we’ve used in our example ontology. The following example contains the
output of the final inference example run, in OWL mode. The statements that
are new are compared to the results from the previous example in bold.

Individual: Chihuahua

type : http://example.org#SmallBreed

type : http://www.w3.org/2002/07/owl#Thing

type : http://example.org#Breed

sameAs : http://example.org#Chihuahua

Individual: Ryan

name : Ryan Blace

owns : http://example.org#Daisy

type : http://example.org#Human

type : http://www.w3.org/2002/07/owl#Thing

type : http://example.org#Mammal

sameAs : http://example.org#Ryan

Individual: Daisy

name : Morning Daisy Bathed in Sunshine

name : Daisy

hasOwner : http://example.org#Ryan

breed : http://example.org#GoldenRetriever

registeredName : Morning Daisy Bathed in Sunshine

type : http://www.w3.org/2002/07/owl#Thing

type : http://example.org#Mammal

type : http://example.org#PetOfRyan

type : http://example.org#Canine

sameAs : http://example.org#Daisy

Individual: GoldenRetriever

type : http://www.w3.org/2002/07/owl#Thing

type : http://example.org#Breed

type : http://example.org#LargeBreed

sameAs : http://example.org#GoldenRetriever
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Individual: Amber

name : Amber

breed : http://example.org#GoldenRetriever

type : http://www.w3.org/2002/07/owl#Thing

type : http://example.org#Mammal

type : http://example.org#Canine

sameAs : http://example.org#Amber

This time there are a lot of new statements in the knowledge model. All of
the inferences of the RDFS inference example are still present. In addition, all
of the individuals are now members of the class owl:Thing. This is because
we are now in the realm of OWL semantics, where all instances are members
of the owl:Thing class. An artifact worth mentioning is that all instances are
owl:sameAs themselves. Depending on the implementation of an inference
engine, you may see statements like these that are technically valid, even if
they are less than useful.

Taking a closer look, Daisy now correctly has the owner Ryan. Now that
the has-owner relationship correctly exists between Daisy and Ryan, the
class ex:PetOfRyan is correctly being interpreted, and Daisy is a member
of it because she has the property ex:hasOwner with a value of ex:Ryan.
Finally, now that the OWL semantics are correctly being interpreted, Amber
is implicitly a canine because she has a property ex:breed that points to an
instance of the class ex:Breed.

This exercise demonstrates the semantics of RDFS and OWL in action. RDFS
introduces the taxonomic structure of properties and classes, allowing you to
take advantage of automatic propagation of statements and class membership.
OWL adds a lot more expressivity using restrictions and advanced class and
property descriptions. An ontology that contains OWL constructs can still
be used by an application that is applying only RDFS or even no inference;
nevertheless, you will not be able to realize all of the semantics of the ontology
unless you use an inference level that supports the constructs you used in
the ontology. The project for the programming example we just explored is
available on the website that accompanies this book. It is designed to accept
any valid ontology, so feel free to play around with the ontology and see the
side effects for yourself.

Working with Ontologies

Working with Semantic Web applications and ontologies can seem like unfa-
miliar territory to developers who are used to working with other, more
traditional information management systems. Semantic Web technologies
enable users to share and reuse the same data sets across multiple platforms
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and applications. They accomplish this through two critical design principles:
decoupling the knowledge model from the application and integrating knowl-
edge models through reuse and extension. The following sections explore these
two design principles and how you can implement them in your Semantic
Web applications.

Decoupling the Knowledge Model from the Application
Decoupling the knowledge model from the application is critical to enabling
data sharing and reuse between users and applications. Knowledge models
built for a specific application often contain application-specific concepts or
are built to consider the application’s implementation. This tightly coupled
approach may improve application performance or simplify the design of
the model, but it limits the user’s ability to move data between applications
and environments. One approach to solving this issue is to translate the data
from application to application; however, if the model contains or requires
application-specific elements, this is a challenging task.

Even if it were trivial to translate between the knowledge models of various
applications, there are still potential complications. The limited expressivity of
traditional knowledge models like relational databases and XML schemas has
forced developers to supplement these models with application-layer business
logic. For example, a database schema is primarily a structural representation
of data. It contains very little information about the semantics of the data. The
interpretation of the information is contained in the queries that execute against
the database and the logic that interprets the query results. While databases
provide some features for expressing additional business logic directly (stored
procedures and query views), most of the time it is introduced as part of the
application itself. This means that part of the knowledge model is actually
embedded in the application. To move to a different application means losing
part of the model or requires the re-implementation of the business logic. This
often leads to situations in which users are stuck with a specific application
even if it is obsolete or inferior to an alternative because the data is so tightly
coupled with that application (see Figure 5-7).

As we said before, the goal is to build a knowledge model that is independent
of the applications that use it. All of the business logic in the model should be
captured in the model itself and not in the applications. This creates a conflict.
You can’t require all applications to operate off of a common knowledge model,
just as you can’t require all users of various knowledge domains to share the
same knowledge model. The solution is to use application-specific ontologies
as interfaces between the user’s knowledge model and the application. Each
application supports its own (or, preferably, a standard) knowledge model,
and developers can integrate their own knowledge models using the various
mapping capabilities provided by OWL and SWRL, some of which we have
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already discussed and others that will be presented throughout the remainder
of this book. This is similar to how component-based systems use programming
interfaces and adapters to achieve integration.

Application

Application

Application

1

2

3

Application

Application

Application

Knowledge
Model

Figure 5-7 Developers can use ontologies and rules to move business logic from applica-
tions into the user’s knowledge model.

What this all means to you as a developer is that you need to learn to move
business logic out of applications and into knowledge models using ontologies
and rules. You must learn to design well-scoped ontologies that prioritize the
requirements of the user rather than the requirements of applications. The
remainder of this chapter addresses these goals.

Sharing across Domain and Application Boundaries
Sharing information across knowledge domains and applications is made
possible by establishing relationships between the concepts in each. You may
not be familiar with the term strigiformes but, if you learn that strigiformes
is the biological order that contains all the species of owls (see Figure 5-8),
you should have a pretty good idea of what the term means. The concept
strigiformes is conveyed by defining it in terms of concepts that you probably
do understand: biological order and species of owls. This kind of information
sharing and interpretation can occur only if these interdomain relationships
and concept mappings exist a priori or are manually added as they are needed.

The amount of effort required to integrate two knowledge domains (or
applications) is directly proportional to the number of distinct, disconnected
concepts in each. The process can involve simple mapping between identical
concepts, the establishment of subclass or subproperty relationships, or
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operations as complicated as mathematical calculations or string manip-
ulations. Some of these relationships can be established using ontology
constructs, but others require the use of a rule language like the Semantic
Web Rule Language (SWRL).

Strigiformes

Species of Owl
Biological

Order

is a

contains

Figure 5-8 Strigiformes is a term most people don’t recognize. Add the fact that strigiformes
is the biological order that contains all of the species of owls, and it is suddenly a
well-defined concept.

To ease domain integration, you should strive to minimize the number of
concepts that are disconnected between domains. One of the easiest ways to do
this is to reuse or extend existing ontology concepts. If an ontology is missing
some content or expressivity that you need, you can extend the ontology to
satisfy your needs. Only if you absolutely must should you create your own
ontology from scratch. When you create a new, unique ontology, it is com-
pletely disjoint from the other ontologies already out there. Any conceptual
connection to other ontologies must be manually added. Your goal in ontology
development should be to create a connected web of concepts and relation-
ships, and this can be accomplished if you reuse and extend existing ontologies
as much as possible and create new ones only when absolutely necessary.

What Is a Foundational Ontology?
When you reuse or extend an ontology, you are using that ontology as a basis
for your domain-specific ontology. An ontology that serves as that basis is
often referred to as a foundational ontology, or an upper ontology. A foundational
ontology is an ontology that contains objects and concepts that transcend
the boundaries of a single knowledge domain. These ontologies can simplify
information exchange by creating an environment in which the terminologies
of disparate knowledge domains are all rooted in a common space. Any
ontology can be used as a foundational ontology; however, it is common
that they are designed with reuse and extension in mind. Some foundational



176 Part II ■ Foundations of Semantic Web Programming

ontologies contain a loosely scoped set of high-level, general terms that can
be used across knowledge domain boundaries, while others are focused more
narrowly on a specific area of interest and provide concepts at various levels
of granularity within that area.

Foundational ontologies create an environment in which different knowl-
edge domains share common sets of root concepts and are able to enrich
the ontology both in breadth and specificity as necessary for each specific
application. When this is achieved, the various domains can share information
at the foundational ontology level regardless of how each ontology has been
extended.

As an example, consider the scenario depicted in Figure 5-9. The two
Internet applications, Jabber (http://www.jabber.org) and Facebook (www.
facebook.com) deal with instant messaging between users and social net-
works, respectively. Jabber focuses on connecting two users so that they can
communicate. Facebook focuses on the interpersonal relationships and com-
munications that exist between friends and their interests. If each application
independently developed an ontology describing the data it contains, the
resulting ontologies would undoubtedly be disjoint. They may share some
of the same ideas and concepts, but the terminology and namespaces used
would be almost certainly different. Consider the knowledge model excerpts
in Figure 5-9. A client on Jabber is referred to as a User. Users are connected
using the property hasContact. A User has a jabberId, a name, and a status.
Facebook shares many of the same concepts but uses different terminology. A
client is a Person. People are connected by the property hasFriend. A Person
has a username and a name and is doing something. A Jabber User is very
similar to the concept of a Facebook Person, and the relationship hasContact

is similar to hasFriend.

Person

Person

hasFriend

is

“Zeus Crawford”

“Chilling”

“zeusCraw”

nameuserName

User

User

hasContact

“Zeus Crawford”“zc1337” “Busy”

statusjabberId name

Figure 5-9 Knowledge models developed independently representing JabberandFacebook
would most likely be completely disjoint even though they share many of the same
concepts.
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Now consider if the two sites developed knowledge models based on a
common set of foundational ontologies. The areas of conceptual overlap that
are apparent between the two domains would be connected by a common set of
concepts. Even if the concepts are relatively general, they provide a high-level
mapping between the two domains that would otherwise be separate.

Common Foundational Ontologies
Over the years, many ontologies have been developed and shared that provide
an excellent basis for extension and reuse. So far we’ve really talked only
about extending foundational ontologies, implying that they provide only a
high-level representation of the concepts you are interested in. This is not
always the case. There are a number of ontologies that take the opposite
approach, providing an in-depth representation of a narrowly scoped area
of interest. With this kind of ontology, you may not necessarily extend the
concepts they contain; rather, you may simply reuse the concepts directly, or
generalize them. The following is a list of projects whose goal is to provide
one or more ontologies or vocabularies that can be used as a reference or a
basis for reuse or extension as you begin to develop your own ontologies. The
ontologies listed are not necessarily OWL specific; however, OWL translations
are available for each.

Basic Formal Ontology (BFO)

Cyc and OpenCyc

Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE)

Dublin Core Metadata Initiative

Friend of a Friend (FOAF)

GeoRSS

Suggested Upper Merged Ontology (SUMO)

OWL Time

BFO

The Basic Formal Ontology (BFO) project maintains an ontology that is
oriented toward scientific research. BFO consists of a number of subontologies
that can be categorized as either SNAP or SPAN ontologies. SNAP ontologies
express concepts useful for describing snapshots of things that are either
enduring (they are not affected by the passage of time) or are instantaneous.
SPAN ontologies express concepts useful for describing things that span
across time and for which temporal context is important. The BFO website
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(http://www.infomis.org/bfo) contains the OWL BFO ontology as well as
information about the project and documentation.

Cyc and OpenCyc

Cyc is a large artificial intelligence (AI) project that is developing a comprehen-
sive ontology and associated knowledgebase of objects and concepts related
to everyday life. The goal of the project is to build a knowledgebase that
can be used by AI applications to reason about the world in order to mimic
human behavior. OpenCyc is the open-source subproject of Cyc and has a
public knowledgebase at its website (http://sw.opencyc.org), allowing users
to search for the terms it contains. Figure 5-10 shows the summary results
of a search for the term Automobile. The OpenCyc website has a Semantic
Web–specific page that contains an automatically translated OWL version of
the OpenCyc ontology. Because the original ontology is not captured in OWL,
some expressivity is lost in the translation to OWL.

Figure 5-10 A search for Automobile in the OpenCyc knowledgebase.
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DOLCE

DOLCE (http://www.loa-cnr.it/DOLCE.html) is a comprehensive ontology
that spans many domains and fields of research. The DOLCE project maintains
an ontology that expresses objects and concepts relevant to natural language
and cognitive science.

SUMO

The Suggested Upper Merged Ontology (SUMO) is a collection of domain
ontologies that are used for various research applications, including linguistics
and reasoning. The project is hosted at http://www.ontologyportal.org.

Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (http://dublincore.org) is a project
whose goal is to develop metadata standards for a wide range of applica-
tions, including document and multimedia description. The project maintains
a registry of metadata terms that can be browsed or searched, as shown
in Figure 5-11. The terms are primarily oriented toward simple and com-
mon descriptive metadata, including title, type, description, authorship, and
timestamp information, and are often used as annotation properties in OWL.

Figure 5-11 The Dublin Core Metadata Initiative maintains a repository of widely applicable
metadata terms at http://dcmi.kc.tsukuba.ac.jp/dcregistry/.
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FOAF

The FOAF project (http://www.foaf-project.org) maintains the Friend of
a Friend ontology, which expresses information relevant to sharing informa-
tion about friends on the World Wide Web. The ontology contains classes
and properties for capturing personal information, email addresses, online
account and instant messaging information, as well as online documents
and images. Following is a sample description of an individual using the
FOAF ontology, generated using the FOAF-a-Matic web application located
at http://www.ldodds.com/foaf/foaf-a-matic.

@prefix: <http://test#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix admin: <http://webns.net/mvcb/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

:me rdf:type foaf:Person ;

foaf:family name “Crawford“ ;

foaf:givenname “Zeus“ ;

foaf:homepage <http://www.zeuscrawford.net> ;

foaf:name “Zeus Crawford“ ;

foaf:title “Mr“ .

The goal of the FOAF project is to provide a means to capture your online
life in an application-independent and website-independent manner in order
to break down the walls that divide the various communities on the Web. The
example shows a declaration of a foaf:Person, with some common properties
about that individual including foaf:name, foaf:title, and foaf:homepage.
Other properties that could be added to this entry are usernames for various
messaging applications and social-networking websites as well as links to
otherfoaf:Person instances that Zeus Crawford is friends with. We’ll reference
and revisit FOAF throughout the examples in this book.

GeoRSS and OWL-Time

GeoRSS (http://georss.org) is a vocabulary of terms that can be used in
RDF documents to represent geospatial information. The primary purpose
of the project is to provide a common vocabulary of geospatial terms for
use in RSS feeds. OWL-Time (http://www.w3.org/TR/owl-time) is a set of
OWL ontologies that express a number of concepts relevant to representing
temporal information in OWL. Some of the concepts that the ontology can be
used to describe include instants in time, durations, and time zones. We’ll visit
modeling and working with the concepts of space and time in more detail in
Chapter 13, ‘‘Managing Space and Time.’’
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Finding Ontologies to Reuse or Extend

We’ve introduced some common foundational ontologies that you can reuse
or extend in your own projects. There are plenty of other ontologies out there
that you may want to take advantage of if none of the ones we’ve discussed are
suitable for your purposes. Fortunately, a number of tools are available to help
you find them. These tools are usually characterized as registries, repositories,
or search engines.

An ontology registry is an application where users can go and register their
ontologies to share with others. Usually the registry maintains a description
of the ontology, some statistics about its contents, and a link to the ontology.
Registries don’t provide ontology storage; they simply act as directories that
users can browse or search in order to find ontologies. A repository is a lot like
the phone book. It contains a searchable list of ontologies and information on
how to find them.

An ontology repository takes a more centralized approach by introduc-
ing ontology storage and management. Not only does the repository allow
users to search and locate ontologies, but the repository stores a local copy
of each ontology and allows users to upload multiple versions of each. It
may also provide ontology-editing capabilities. There are a number of ontol-
ogy repositories on the Web. Some of them are general purpose, but most
have a specific focus or area of interest. For example, the TONES Ontology
Repository (http://owl.cs.manchester.ac.uk/repository) is maintained to
provide tool developers a central location to find test ontologies. You can
browse the repository using various metrics and filters, as shown in Figure 5-12.

An example of a domain-specific ontology repository is BioPortal (http://
bioportal.bioontology.org). BioPortal is a repository for biomedical ontolo-
gies. It provides the ability to browse, search, and visualize the concepts
contained in its ontologies. Figure 5-13 shows the results of a search for
influenza that eventually led to the visualization of the concept Influenzal
pneumonia.

Registries and repositories each require users to actively push their ontology
out into the world. Ontology search engines take a more automated approach,
crawling the Web using URIs and hyperlinks, searching for and indexing the
ontologies they find. One of the most prominent ontology search engines on
the Web today is Swoogle (http://swoogle.umbc.edu). Swoogle allows you to
search an index of ontologies using plain-text queries as you would with any
information-retrieval system like Google or Yahoo. We will discuss Swoogle
again as part of our discussion of exploring the Semantic Web in Chapter 7;
however, it is useful to draw attention to the distinction between an ontology
search engine and an ontology-enhanced search engine. An ontology search
engine is used to locate ontologies. An ontology-enhanced search engine uses
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ontologies to enhance the process of locating and ranking web pages that are
relevant to a search.

Figure 5-12 The TONES Ontology Repository contains ontologies that are indexed accord-
ing to a number of metrics and can be searched using various filters.

OPEN ONTOLOGY REPOSITORY

The Open Ontology Repository is a project aimed at creating an ontology
repository architecture that provides full life-cycle support for the use of
ontologies throughout the world. The goal is to provide a deployable server
framework that businesses and organizations can use to support the creation,
searching, and sharing of ontologies. Additional features include version
management and ontology language translation services. More information can
be found about the Open Ontology Repository project at
http://www.openontologyrepository.org.
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Figure 5-13 The BioPortal ontology repository provides search and browse capabilities as
well as visualization tools and ontology mappings.

Choosing the Right Foundational Ontologies
As we’ve said, many of the foundational ontologies we are discussing are
not Semantic Web–or OWL-specific and were developed using a variety
of ontology languages and for a variety of reasons. In most cases, OWL
translations are available; however, you may encounter situations in which
there is no OWL representation of an ontology you would like to use. In these
cases, it is good practice to use the foundational ontology as a reference for
modeling your ontology so that the models will at least be consistent in design.

In our experiences working with ontologies, we have found that a founda-
tional ontology is most useful if it tries to achieve either a wide-breadth or a
deep-depth representation of a well-scoped area of interest, but not both. We
have found that ontologies that try to express everything in the world to a
great level of detail are intractable unless we work only with subsets of the
concepts they contain.

When working with ontologies, it is critically important to avoid overrep-
resenting your knowledge domain. Because the ontology model is inherently
flexible and extensible, you don’t have to worry about including and describ-
ing every piece of information you may ever be interested in. Rather, you
should focus on your current requirements and simply try to avoid anything
that might limit or interfere with your future modeling requirements.
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Summary

In this chapter, you learned about a number of topics that are critical to using
OWL in the real world. We discussed knowledgebases and their components,
including storage mechanisms, query processors, and inference engines. We
introduced you to a number of common components and frameworks that
you can use in your own applications. You learned that Jena and Pellet are
two of the components that are used throughout this book.

After your introduction to knowledgebases and inference, you learned about
the importance of having profiles of OWL, which trade some expressivity for
desirable computational characteristics and will help tool developers and
programmers like you make applications that meet real-world performance
requirements. Next you saw a detailed example that integrates the Pellet
inference engine with the Jena Semantic Web Framework to demonstrate
OWL semantics against the sample ontology that was built in Chapter 4.

We ended the chapter by exploring some important ontology design prin-
ciples, including the importance of ontology reuse, the role of foundational
and application ontologies, and a number of commonly used foundational
ontologies. Finally, you learned how you can go about finding ontologies on
the Web, which you can reuse in your Semantic Web applications. As you
move ahead into the next chapters, you will continue to learn about the critical
components of the Semantic Web so that you will have all the tools you need
to program with the Semantic Web.
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6

Discovering Information
‘‘All truths are easy to understand once they are discovered; the point is to

discover them.’’

—Galileo Galilei

Information discovery concerns the different ways we can find information
that is stored in RDF statements. There is no single method for locating
information in the Semantic Web that works in all situations. Depending upon
whether we know exactly what we are searching for and where the data might
exist, and if we are aware of how the data is structured, we could discover the
answers through navigation, searching, or querying.

Navigation is the simplest form of information discovery, where we have a
tool to retrieve and visualize RDF data and, triple by triple, we dereference
URIs to locate additional triples with no particular plan or goal in mind.
Dereferencing a URI is the process of requesting and receiving a URI resource’s
representation (for example, a web page). This process repeats until we run out
of triples or inclination. When we navigate, we may or may not be concerned
with finding an answer because we might not have a question in mind;
navigation can be thought of as free discovery. Semantic Web browsers are one
means of navigation and will be explored in this chapter.

Searching builds on navigation by not only having a goal, such as searching
for information on Chinese restaurants, but also relying upon more than just
our navigation tool to find information manually. Searching doesn’t have to
be limited to search engines, although they are good examples of common
search implementations. Focusing on keyword searching, the use of keywords
requires the user to have a goal (we can’t perform keyword searching without
some criteria or input), and searching allows us to leverage all the Semantic
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Web documents and data stores that have been previously indexed by the
engine. This type of information discovery might include not knowing where
to find this knowledge or how much of it is available in a semantic format.

Querying is the final form of information discovery that allows for complex,
explicit, and structured questions to be posed, and the resulting information
either succeeds or fails to answer those questions. Querying is based on formal
syntax and semantics and, unless explicitly told to do so, does not return
approximate information or supply answers that are ‘‘good enough.’’ This
type of information discovery tends to be the most difficult because it isn’t
always easy or efficient to develop the optimal query. Much like software
development, we may think our query should be performing correctly, yet
we’re not seeing the results we’re expecting. We will explore querying through
SPARQL, a W3C-based RDF query language.

In this chapter, you investigate each form of information discovery: nav-
igating, searching, and querying. This chapter focuses on querying using the
SPARQL query language and all its various components. We chose this focus
because querying requires learning a query language, its syntax, and usage. By
the end of the chapter, you will gain familiarity with and get comfortable using
the various types of information discovery as well as building and executing
SPARQL queries. In this chapter, you will learn about:

Navigating, searching, and querying

Understanding and using each type of information discovery

Querying with SPARQL

Navigating the Semantic Web

We remember first discovering and surfing the Internet; with every hyper-
linked click we would find another wellspring of information, browsing to all
sorts of topics not knowing where the hours went. This drunkard’s walk for
information wasn’t always effective, but it provided a good starting point for
getting a sense of what information was available, where it could be found,
and how much of it existed. Navigating does not need to be goal-oriented, as
we are merely exploring the RDF landscape, and hence there is no requirement
for returning or finding any information of interest.

For the Internet, we use a web browser for navigation. For the Semantic
Web, we can use a Semantic Web browser. Browsing the Semantic Web seems
a little odd at first. For most of the book, we have talked about how the
Semantic Web is focused on machine-based accessibility and semantic artifacts
that aren’t primarily for user consumption. Yet it is extremely useful to have a
tool that visualizes RDF data for debugging, data verification or, in our case,
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free discovery. It is important that you are aware of Semantic Web browsers
and their use so you can gain a sense of how much interconnected RDF data
and other RDF-based languages, such as OWL, are available today on the
Internet.

In addition to Semantic Web browsers, there are also RDF browsers.
The former dereferences resolvable URIs, enabling a continuous explo-
ration of browser-accessible triples, while the latter visualizes RDF triples
typically based on a local RDF data store. There is not universal agree-
ment on this distinction as some technologists still refer to both as RDF
browsers. Several options are available, such as the Tabulator Extension for
Firefox (http://dig.csail.mit.edu/2007/tab/), OpenLink’s RDF Browser
(http://demo.openlinksw.com/DAV/JS/rdfbrowser/index.html), and Disco
(http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/), to name a few.
We’ll demonstrate Disco, built at Freie Universität Berlin, for our exploration.

Disco has a simple interface that displays triples in a table-based layout, as
shown in Figure 6-1. In addition, Disco provides easy access to provenance
information by displaying the source graph for each triple, detailed in the
Sources column on the right-hand side.

Navigation requires us to have a starting point. In this case, we’re starting
with Matt’s FOAF information, as displayed in Figure 6-1. After entering
the FOAF URI into Disco (notice the inclusion of fragment identifier #me),
we quickly get an overview of Matt (we will assume this FOAF file is
accurate and provides only truthful information about Matt Fisher, ignor-
ing the larger aspects of trust and security). We see that he knows several
people and has listed the web pages for his workplace, home page, and
other items such as the nearest airport. We see what Matt looks like based
on the foaf:depiction object resource that resolves to a PNG image. After
we’ve finished exploring this knowledge, we decide to learn more about
what Matt is interested in, so we follow the foaf:topic interest link to
http://dig.csail.mit.edu/data#DIG. You may get different results online
since DIG’s data is offered through MIT’s resources and might change
over time.

Disco next displays information about DIG, also known as the Decentralized
Information Group, its members, logo, URI, and home page, as shown
in Figure 6-2. We’ve learned quite a bit at this point following only two
URIs. In fact, in the case of Figure 6-2, Disco automatically dereferenced
six URIs (noted at the bottom of the figure under the Sources heading)
to populate this page and has used the triples found at these websites
to display incoming URIs. In other words, Disco is displaying triples
where http://dig.csail.mit.edu/data#DIG is both the subject and
object resource across multiple RDF data stores. Notice the unusual is

includes of property shows DIG as the subject instead of the object for
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Figure 6-1 The Disco browser interface

property http://www.w3.org/2001/04/roadmap/org#includes, for easier
viewing in Disco’s tabular format. These additional references expand the
potential direction we can browse because we see not only all resources
that http://dig.csail.mit.edu/data#DIG relates to but also some of the
resources that relate to http://dig.csail.mit.edu/data#DIG. Note that
this page doesn’t show all known triples in the world that reference
http://dig.csail.mit.edu/data#DIG, only those in our session cache (that
is, all graphs and their triples that have been dereferenced by Disco so far).
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Figure 6-2 Disco displays information about DIG

Looking for more information, we click on Tim Berners-Lee’s name from the
DIG data, which leads us to Tim’s FOAF file and some personal information,
much like we discovered about Matt. We could continue this journey by
repeatedly following links to additional sources of RDF data. This cycle ends
when we decide that there is no more information we want to gather or if a
particular URI is dereferenced but contains no RDF data. In the latter case, we
can return to an earlier Disco page and traverse other URIs. Chances are we’ll
run out of interest before we run out of RDF links.

In summary, we learned a little about Matt Fisher, Tim Berners-Lee, DIG,
and the names of some people who work at DIG. We weren’t out specifically to
target any of these things; our free discovery of RDF data led us to them. Like
throwing a wide net into the sea, we started at a URI and began to follow the
data, not sure where it would take us or what we would learn. The resulting
information could be used to tell us how to contact Matt, who to call at DIG
for a job interview, or what the various hobbies are of the folks who work at
DIG. Our discovery is limited only by the quantity and quality of data people
publish in RDF. Note that this type of navigation is dependent on the fact that
URIs are resolvable ( i.e., when they are dereferenced, some usable data is
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returned). Plenty of RDF stores don’t have resolvable URIs (for example, using
www.example.org as a hostname) and therefore won’t work for browser-based
navigation.

Unfortunately, navigation can quickly become cumbersome as information
discovery becomes a regular chore. In addition, there simply isn’t sufficient
time to navigate through enough data sources to solve questions when we
have them. In these cases, we need to graduate to searching.

Searching the Semantic Web

Searching goes beyond navigating because users are typically looking for
answers (goal-oriented), and more automation is involved (moving beyond
simple URI dereferencing in a browser to relying on some computer agent
for results). When we search, we would like to take advantage of any data
preprocessing a system has completed in advance, such as discovering, sorting,
filtering, indexing, and storing. By entering a set of search parameters, we are
loosely defining what information we wish to retrieve and how we wish to
retrieve it (the parameters and their capabilities are highly dependent on the
functionality of the search agent).

In this section, we’ll be using Swoogle (http://swoogle.umbc.edu/) as
our search agent. Swoogle was developed at the University of Maryland,
Baltimore County (UMBC) and contains some of the main features used
by major Internet search engines. Swoogle employs crawlers to discover
Semantic Web documents, indexes document metadata, and calculates an
ontology rank, a measure of a document’s importance in the Semantic Web
space. We won’t be investigating the mechanics of Swoogle in this section,
but you can find additional information at http://ebiquity.umbc.edu/

file directory /papers/116.pdf. Other semantic search engines include
SWSE (http://swse.deri.org/), Sindice (http://www.sindice.com/), Wat-
son (http://watson.kmi.open.ac.uk/WatsonWUI/), and Falcons (http://iws
.seu.edu.cn/services/falcons/objectsearch/index.jsp).

When we were navigating, our examples focused on traversing instance
data. We could have followed class and property definitions just as easily.
Search engines are a great way to locate metadata such as ontology models and
definitions. Searching for metadata is useful toward encouraging knowledge
reuse: We don’t want to create ontologies, vocabularies, or any type of RDF
data model without initially verifying the existence of similar or identical
models. Reuse not only saves time but also promotes growth of the Semantic
Web by linking existing data together, enriching the existing web of data.

If, for example, we were interested in extending the FOAF ontology to
include genealogical attributes about a person, such as siblings, parents, and
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grandparents, it would be wise to see what similar RDF models have already
been produced. Swoogle can do that with a search for properties that include
the terms brother, sister, father, and grandfather, as shown in Figure 6-3.

Figure 6-3 Searching Swoogle for genealogical definitions

The use of the def: constraint states that we are strictly looking for class or
property definitions that include the terms brother, sister, father, and grandfather.
Several dozen Semantic Web documents were found at the time of this search,
and, as we refine our query, it is likely that our results will become smaller and
increasingly relevant. There are additional Swoogle parameters for improving
search results, such as limiting the potential document pool to OWL files,
defining a date and time window for valid documents, or making reference to
ontologies of a particular size or specific URIs.

For example, since we started with the idea of expanding FOAF, we could
verify if other data modelers had followed a similar vein by using the search
string

def:brother def:sister def:father def:grandfather

url:"http://xmlns.com/foaf/0.1"

This search returns nothing, yet takes us a step closer toward realizing the
need to create a new FOAF-based genealogy ontology. Finding this information
through navigation techniques alone could never be as effective.

Searching is only as useful as the keywords on which it is based. In
addition, there is no one Semantic Web search engine that has indexed
every URI-accessible RDF document and RDF store, and it is possible that
a particular engine isn’t crawling the proper data store. There are instances
where we know where the data might be housed and we want to ascertain, with
100 percent accuracy, the existence of some particular data set. What we need
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is a transition from keywords into more explicit syntax, like that provided by
a query language, as well as the ability to define the data stores in which to
search, independent of the search engine.

Querying the Semantic Web

Querying the Semantic Web requires a language that recognizes RDF as the
fundamental syntax. From this base, querying RDF-based languages such
as OWL from a pure RDF perspective does not require special procedures
or language features. SPARQL is a recursive acronym for SPARQL Proto-
col and RDF Query Language and is pronounced ‘‘sparkle.’’ SPARQL is
a W3C Recommendation and is the language we’ll use for the rest of the
chapter. There are other RDF query languages, such as RDQL (RDF Data
Query Language) and SeRQL (Sesame RDF Query Language, pronounced
‘‘circle’’), but we’ll be limiting the discussion to SPARQL because of its W3C
standardization, the wide community support, and the large number of pub-
licly available endpoints. An endpoint, also called a processor, is a service
(although not necessarily a web service) that accepts and processes SPARQL
queries and returns results in different formats depending on the query form
(query forms will be discussed in more detail later in the chapter). Those
endpoints that are available via HTTP should follow the SPARQL protocol
(http://www.w3.org/TR/rdf-sparql-protocol/).

Note that SPARQL is both a query language and a protocol. Most people
focus on the query language since it defines the syntax in which to frame
queries. The protocol is used to describe how a SPARQL client (such as one
accessible via a web browser) talks to a SPARQL endpoint/processor (such as
http://dbpedia.org/sparql) both in an abstract sense and using a concrete
implementation based on WSDL 2.0. In addition, most code libraries will hide
the protocol implementation, but the same cannot be said of using the language.
The SPARQL Recommendation (http://www.w3.org/TR/rdf-sparql-query/)
is the official specification for the query language. If this chapter doesn’t have
an answer you need, refer to the Recommendation directly.

Quickstart with SPARQL
If you are familiar with SQL, SPARQL will seem like a long-lost friend (unless
you have some unpleasant memories of SQL). Before we get into the details
of SPARQL, let’s try a quick example to see the query language in action. Go
to http://dbpedia.org/sparql, and you should see a page displayed similar
to that in Figure 6-4. Enter the following query in the Query textbox (you will
want to overwrite any existing text that appears in the textbox), and click the
Run Query button.
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# George Washington’s Namesakes

SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label>

"George Washington"@en.

?location <http://dbpedia.org/property/namedFor> ?person

}

Figure 6-4 Querying DBpedia’s SPARQL endpoint for all locations named after
George Washington

The query asks for all locations that have been named after George Washington.
It may not be initially clear that the SPARQL query and its English translation
are expressing the same idea, but translating queries becomes easier with
practice.

There are two main components to this query: the SELECT and WHERE clauses.
The SELECT clause identifies which variables and their values will be returned
from the query, and the WHERE clause defines the graph pattern that will be
matched against the data in DBpedia’s RDF repository. ?person and ?location

are variables representing either resources or data types. Variables are stated
in lower CamelCase, and keywords (such as SELECT and WHERE) are capitalized.
These conventions are a stylistic choice, not a requirement. Also, the literal
George Washington is an English-based language string (represented by the
trailing en language tag), and the URI properties (label, namedFor) denote
the references that connect everything together. The pound sign (#) permits
full-line comments. The graph for this query is depicted in Figure 6-5.



194 Part II ■ Foundations of Semantic Web Programming

?location

http://dbpedia.org/property/namedFor

http://www.w3.org/2000/01/rdf-schema#label George Washington

?person

Figure 6-5 RDF graph pattern for George Washington’s namesakes

Note the reuse of variable ?person. Variable usage in SPARQL is similar to
typical programming languages: A variable holds one RDF resource at a time,
and that variable and its value can be reused throughout a query. Variables
have global scope in a query no matter how many graph patterns are used.
One final note on variables: Both the question mark (?) and the dollar sign
($) are valid when indicating a variable in SPARQL, but conventionally the
question mark is used.

By default, DBpedia returns an HTML table with the result set, as shown in
Table 6-1. A result set is mapping from a set of variable(s), ?location in this case,
to a set of RDF terms. Note that when you execute this query, your results may
be different from those displayed in this chapter since the underlying DBpedia
data can change. Information on the Internet is constantly growing and evolv-
ing over time, and you have (near) real-time access to it. Don’t be alarmed that
all semantic solutions are as fluid as this example. We realize not every solution
needs to be centered on an open system (we’ve noted that closed systems work
well for Semantic Web technologies), but the ability to harness global data, or
even your own distributed data around the Internet, is a possibility.

Table 6-1 Washington’s Namesakes

LOCATION

http://dbpedia.org/resource/Grayson County%2C Kentucky

http://dbpedia.org/resource/Washington County%2C Minnesota

http://dbpedia.org/resource/Washington County%2C Utah

http://dbpedia.org/resource/Washington County%2C Georgia

http://dbpedia.org/resource/Washington County%2C Idaho

http://dbpedia.org/resource/Washington County%2C Ohio

http://dbpedia.org/resource/Washington Parish%2C Louisiana

http://dbpedia.org/resource/Washington County%2C Kentucky
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Returning to our example, we could view the results as XML instead of
HTML. To view the XML output, select XML from the Display Results As
drop-down list box on the lower-left-hand side of the query interface, as shown
in Figure 6-4. The details of how SPARQL results are serialized in XML can be
found at http://www.w3.org/TR/rdf-sparql-XMLres/. The following results
are a subset of the previous result set but displayed in XML (modified for
readability):

<?xml version="1.0" ?>

<sparql xmlns="http://www.w3.org/2005/sparql-results#"

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance"

xsi:loc="http://www.w3.org/2001/sw/DataAccess/rf1/result2.xsd">

<head>

<variable name="location"/>

</head>

<results distinct="false" ordered="true">

<result>

<binding name="location">

<uri>http://dbpedia.org/resource/Grayson County%2C Kentucky

</uri>

</binding>

</result>

<result>

<binding name="location">

<uri>http://dbpedia.org/resource/Washington County%2C Minnesota

</uri>

</binding>

</result>

. . .

</results>

</sparql>

A couple of notes:

These results are not ordered. If the same query were run again, it
would be acceptable to return the same values in a different order.

The term binding is used to relate a variable to an IRI, a blank
node, or a literal. A variable has no bindings if there are no
results for that particular variable. In this example, the vari-
able location is bound to RDF resources that represent Grayson
County, Kentucky, and Washington County, Minnesota.

Here are some variations of the same query that do not return any bindings
for the variable ?location. Try them out at http://dbpedia.org/sparql.

# There are no triples in which the exact label, "George Washington"

# exists in DBpedia (i.e. every reference to "George

# Washington" has a language tag). This pattern matching failure

# is due to SPARQL’s default entailment as discussed in the

# section entitled, "SPARQL entailment"
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SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label> "George

Washington".

?location <http://dbpedia.org/property/namedFor> ?person

}

# There are no triples that state that George Washington was named

# in honor of some location

SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label> "George

Washington".

?person <http://dbpedia.org/property/namedFor> ?location

}

Four Foundational Query Forms
SPARQL supports four different query forms:

SELECT—SELECT is comparable to SQL’s SELECT statement. The SELECT

keyword instructs endpoints to bind RDF terms (blank nodes, IRIs, or
literals) to variables based on the given graph pattern (for example,
the WHERE clause). Bindings are simply returned and are not part of an
RDF graph. SELECT-based result sets display well in tabular form.

CONSTRUCT—CONSTRUCT allows you to reformulate bound variables
into any kind of RDF graph you can design, as long as each triple
is valid (for example, no literals used in the subject or predicate
position). This query form allows an easy and powerful way
to transform data from one RDF graph or OWL ontology into
another. Graphs returned from CONSTRUCT queries can be added
to RDF repositories or combined with other RDF graphs.

ASK—If you want to know whether a particular graph exists, ASK
will respond with a boolean result of either true or false. Clients
are able to probe endpoints for information without having to
submit a potentially-expensive SELECT or CONSTRUCT query.

DESCRIBE—DESCRIBE returns an RDF graph determined solely by
the processor with limited query input from a client. DESCRIBE is
an interesting case since the client does not need to be intimately
familiar with how the data is structured. The endpoint ultimately
decides what RDF data is returned to the client. DESCRIBE can be
useful for building foundational information when data source
awareness is not present. It is not used as heavily as the other forms.
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We’ll discuss the SELECT query form first, followed by RDF datasets and the
use of keywords such as FROM and FROM NAMED. Next, we’ll discuss common
modifiers such as LIMIT, DISTINCT, and ORDER BY. All of these areas will give
us a solid background before we move into the other three query forms of
CONSTRUCT, ASK, and DESCRIBE.

SELECT Essentials
Returning to our earlier example with George Washington, it quickly becomes
a hassle to deal with long, repetitive namespaces. SPARQL supports the use of
XML namespace prefixes with the PREFIX keyword. Most of the syntax used in
SPARQL, such as prefixes and graph patterns, is modeled after the Turtle/N3
serialization and is covered in more depth in Chapter 4, ‘‘Incorporating
Semantics.’’ Prefix names, such as dbprop, can be as short as a single letter but
typically represent a readable shorthand description of the subsequent IRI,
which must be wrapped in angle brackets.

# George Washington’s Namesakes

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

SELECT ?location

WHERE {

?person rdfs:label "George Washington"@en.

?location dbprop:namedFor ?person

}

Listing every single variable in the SELECT clause can also be cumbersome.
Just like SQL, queries do not always need to SELECT specific variables. Return-
ing all known bindings for all variables is possible through the use of the
asterisk character (*). The asterisk is available only to the SELECT and DESCRIBE

query forms. If we rewrote the previous query using the asterisk, the result set
would bind all declared variables: ?location and ?person.

# George Washington’s Namesakes

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

SELECT *

WHERE {

?person rdfs:label "George Washington"@en.

?location dbprop:namedFor ?person

}

We mentioned before that the WHERE clause is the graph pattern that is
compared against RDF data to find the appropriate matching RDF results. If
the WHERE clause doesn’t find an exact match against the RDF data store, then
data is not returned.



198 Part II ■ Foundations of Semantic Web Programming

Every line in the WHERE clause that is a complete triple must have a period
at the end, except for the last line. A semicolon is valid when the subject
is reused for two or more triples. A comma is valid when both the subject
and predicate are reused for two or more triples. From the processor’s point
of view, these characters provide clear demarcation between triples since
white space characters such as line breaks, line feeds, and carriage returns are
valid and do not act as demarcation flags. See the following note on turtle
equivalency statements for an example of the syntax.

TURTLE EQUIVALENCY STATEMENTS

Capitalizing on reusable IRIs can greatly cut down on repetitive query strings.
Below is a table for quick reference on syntax usage, recapping Chapter 4’s
coverage of Turtle. Each row refers to an equivalent set of triples.

STANDARD COMMON SUBJECT COMMON SUBJECT
AND PREDICATE

a :b c . N/A N/A

d :e f .

a :b c . a :b c ; N/A

a :e f . :e f .

a :b c . a :b c ; a :b c , f .

a :b f . :b f .

The following example demonstrates the use of semicolons with a query for
George Washington’s occupation(s), any and all places where he was born,
and any image(s) of him. As an aside, we stress the possibility of multiple
answers because it is not safe to assume there will be a single answer to any
given query. For example, we ask for any and all places George Washington
was born because people can be born in a city, county, state, province, country,
as well as a hemisphere.

# George Washington’s occupation(s), birthplace(s) and image(s)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?job ?birthLoc ?picture

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

}
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Sure enough, we find Mr. Washington has five known birthplaces. Notice
that those five locations are repeated twice. Washington’s occupations are also
repeatedly listed (Table 6-2 shows the result set, substituting the prefix
r for http://dbpedia.org/resource/ and w for http://upload.wikimedia.

org/wikipedia/commons/b/b6a/, for easier viewing).

Table 6-2 Frivolous Facts of a Founding Father

JOB BIRTHLOC PICTURE

r:Farmer r:British America w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Colony of Virginia w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Colonial Beach
%2C Virginia

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Westmoreland County
%2C Virginia

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:United States of
America

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:British America w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Colony of Virginia w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Colonial Beach
%2C Virginia

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Westmoreland County
%2C Virginia

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:United States of
America

w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

Our result set seems to be returning a significant amount of duplicate data.
We ran the query again with the DISTINCT modifier (described in more detail
later in the chapter) to remove the duplicates.

# George Washington’s occupation(s), birthplace(s) and image(s)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?job ?birthLoc ?picture

WHERE {

?person rdfs:label "George Washington"@en;
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dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

}

The result set is identical to the first. It turns out that the data we’re
seeing for both queries is completely valid. Recall that the WHERE clause
is a graph pattern and is matched to a set of RDF items one at a
time. The first time the query is run, DBpedia found a unique set of
bindings (called a query solution) to the three variables (job, birthLoc,
and picture) based on the IRIs of Farmer, British America, and Gilbert

Stuart Williamstown Portrait of George Washington.jpg that, together,
matched the WHERE clause. DBpedia found another query solution based on
the IRIs of Farmer, Colony of Virginia, and Gilbert Stuart Williamstown

Portrait of George Washington.jpg. Each query solution is unique, as
shown in the following standard XML result set (modified and highlighted
below for readability):

<?xml version="1.0" ?>

<sparql xmlns=http://www.w3.org/2005/sparql-results#

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:loc="http://www.w3.org/2001/sw/DataAccess/rf1/result2.xsd">

<head>

<variable name="job"/>

<variable name="birthLoc"/>

<variable name="picture"/>

</head>

<result>

<binding name="job">

<uri>http://dbpedia.org/resource/Farmer</uri>

</binding>

<binding name="birthLoc">

<uri>http://dbpedia.org/resource/British America</uri>

</binding>

<binding name="picture">

<uri>http://upload.wikimedia.org/wikipedia/commons/b/b6/

Gilbert Stuart Williamstown Portrait of George

Washington.jpg</uri>

</binding>

</result>

<result>

<binding name="job">

<uri>http://dbpedia.org/resource/Farmer</uri>

</binding>

<binding name="birthLoc">

<uri>http://dbpedia.org/resource/Colony of Virginia</uri>

</binding>
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<binding name="picture">

<uri>http://upload.wikimedia.org/wikipedia/commons/b/b6/

Gilbert Stuart Williamstown-

Portrait of George Washington.jpg</uri>

</binding>

</result>

...

</results>

</sparql>

Each highlighted section is a single-query solution and has three unique
pairings/bindings of variable to value.

We conclude with a note about RDF collections. SPARQL supports RDF
collections with Turtle syntax:

(collItem1 collItem2 collItem3 ...).

It is difficult to write a query that lists all the items in a collection because
there is no support for looping or variable-length lists. It is the experience of the
authors that RDF collections are not used heavily in production environments.

TIPS ON SPARQL QUERY DEBUGGING

Debugging SPARQL queries can be a challenge. It is not always easy to find why
your queries aren’t working quickly (language tags easily fall into this category).
Here are some tips.

◆ Dump your data. When querying via SELECT, if you aren’t seeing any bound
variables or get an incomplete set of results (low precision), rewrite your
query to use more variables, and add them to your SELECT statement. This
will allow you to see more results after execution, a process that harkens
back to the days of debugging C/C++ code with printf statements.

◆ Simplify, simplify, simplify. Fault detection is much easier if you
remove a single line, term, or expression from your query and
rerun it. This process of elimination can be tedious, but it will
serve you well when frustration sets in and you are making all
sorts of random changes without remembering any of them.

◆ Verify your contents. When querying small-to-medium RDF stores, make
sure the statements you think are in the repository are actually there. For
example, you could run the following query for a complete listing of triples:

select ?statement ?pred ?obj

where {

?statement ?pred ?obj

}

(continued)
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TIPS ON SPARQL QUERY DEBUGGING (continued)

Note that beyond your sandbox RDF store, SPARQL endpoints on the
Internet are not required to respond to this query as it can obviously
eat up resources and may be tagged as a denial-of-service attack.

◆ Delete DISTINCT and remove REDUCED. In some cases, using
either of these keywords masks what your graph pattern is actually
returning. A query could be more complex than it needs to be, but
you have to see the entire result set to be absolutely certain.

◆ Restrict result sets with LIMIT. While we haven’t yet covered the
LIMIT keyword in detail, it is useful in limiting the number of
results that a query returns, saving time when executing queries.

RDF Datasets, FROM and FROM NAMED
Take a look at the Default Graph URI textbox on DBpedia’s SPARQL page in
Figure 6-6.

Figure 6-6 DBpedia’s Default Graph URI textbox

Every SPARQL query is always run against at least one graph: the default
graph, one or more named graphs, or a merged set of the default and all named
graphs. The default graph is the main repository of RDF triples that is searched
by an endpoint when it is presented with a query. SPARQL clients should be
able to override the default graph or add to the possible set of queried data
stores by providing one or more FROM or FROM NAMED clauses. In the following
example, the graph that is queried is created as a result of the merger of the
triples from each FROM clause’s IRI without the default graph. We will get into
more details of named graphs when we discuss them later in the chapter.
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Branching out from DBpedia’s default graph, let’s find out anything we can
about Tim Berners-Lee’s friends (used because his FOAF file is rich with data).
Returning to the DBpedia query page, remove the URI in the Default Graph
URI textbox, select Retrieve remote RDF for all missing source graphs from
the drop-down list box, and then execute this query:

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX karl: <http://www.w3.org/People/karl/karl-foaf.xrdf#>

SELECT ?personName2 ?predicate ?object

FROM <http://www.w3.org/People/Berners-Lee/card>

FROM <http://www.w3.org/People/karl/karl-foaf.xrdf>

FROM <http://www.koalie.net/foaf.rdf>

FROM <http://heddley.com/edd/foaf.rdf>

FROM <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM <http://www.dajobe.org/foaf.rdf>

FROM <http://www.isi.edu/∼gil/foaf.rdf>
FROM <http://www.ivan-herman.net/foaf.rdf>

FROM <http://www.kjetil.kjernsmo.net/foaf>

FROM <http://www.lassila.org/ora.rdf>

FROM <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

tbl:i foaf:knows ?person.

?person foaf:name ?personName1;

rdfs:seeAlso ?iri.

?iri foaf:primaryTopic ?person2.

?person2 foaf:name ?personName2;

?predicate ?object

FILTER(?personName1 = ?personName2).

}

Table 6-3 shows a few selected results from the full result set with some
of the namespaces prefixed or removed for readability. The original result set
consists of over 75 rows of data describing three friends who matched the
?personName2 variable.

Several points are worth discussing:

This query is more complex than the previous example, but
it is also more realistic. As with any query language, getting
the perfect set of all the right answers (high recall, high preci-
sion) can take work and still result in some very large queries.
Many tutorials never mention this side of querying.

There are 11 FROM graphs in the query, but there are details for only
three friends. The reason for the sparse results is because of the focused
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query. Our query is looking for Tim’s friends whose own FOAF files
have been specifically referenced with an rdfs:seeAlso predicate and those
subsequent FOAF files have used the foaf:primaryTopic predicate to reference
that particular friend’s FOAF identity and the friend’s names, in both Tim’s
FOAF file and the friend’s FOAF file, are identical. The FILTER clause is
new but straightforward; we’ll cover it in detail later in the chapter.

An issue with this query is that we have to know the IRI of every graph
we want to search. This is forgivable because, in the long run, we will
create the tools that will automate the crawling. The Semantic Web was
built to automate searches like these. The Semantic Web Client Library
(http://www4.wiwiss.fu-berlin.de/bizer/ng4j/semwebclient/) is a
perfect example of this.

Table 6-3 Getting to Know Tim’s Friends

PERSONNAME2 PREDICATE OBJECT

Coralie Mercier rdfs:type foaf:Person

Coralie Mercier foaf:name Coralie Mercier

Edd Dumbill rdfs:seeAlso http://times.usefulinc.com/

Edd Dumbill foaf:knows http://danbri.org/foaf#danbri

Edd Dumbill foaf:depiction edd-shoulders.jpg

Karl Dubost foaf:givenname Karl

Karl Dubost foaf:title Mr

Karl Dubost foaf:workInfoHome page http://www.w3.org/People/karl

It would be helpful if we could limit any part or the entire query graph
pattern to particular RDF data sets. Declaring provenance data by specifying
the data store that contributed each triple could be critical in certain circum-
stances. Named graphs, the third and final type of RDF data set, handles both
of these challenges.

USING THE BASE KEYWORD

Searching for Tim’s friends still caused us to retype IRIs more than once. We
can reduce redundancies with the use of the BASE keyword. SPARQL allows for
a single base URI to be declared from which all other relative IRIs derive. We

(continued)
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USING THE BASE KEYWORD (continued)

can’t eliminate all unnecessary duplications, but in the case of the query for
Tim’s friends, the query could change from

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX karl: <http://www.w3.org/People/karl/karl-foaf.xrdf#>

SELECT ?personName2 ?predicate ?object

FROM <http://www.w3.org/People/Berners-Lee/card>

FROM <http://www.w3.org/People/karl/karl-foaf-xrdf>

...

to

BASE <http://www.w3.org/People/karl/karl-foaf.xrdf>

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

# all relative IRIs have the BASE IRI prepended automatically

PREFIX karl: <#>

SELECT ?personName2 ?predicate ?object

FROM <http://www.w3.org/People/Berners-Lee/card>

# not an empty graph, BASE will be used

FROM <>

...

or

BASE <http://www.w3.org/People/karl/>

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

# all relative IRIs have the BASE IRI prepended automatically

PREFIX karl: <karl-foaf.xrdf/#>

SELECT ?personName2 ?predicate ?object

FROM <http://www.w3.org/People/Berners-Lee/card>

# all relative IRIs have the BASE IRI prepended automatically

FROM <karl-foaf.xrdf>

...

all of which return identical result sets.

Named graphs are possible through the use of the FROM NAMED keywords.
Named graphs act just like default graphs, but there are two subtle differences.
First, the SPARQL specification notes that named graphs are a pairing of the
graph itself (some set of triples) to an IRI. Without both, the named graph
doesn’t exist. Default graphs do not have this pairing. Second, named graphs
are followed by their own graph pattern, delineated by an additional pair of
curly brackets ({}), scoping the possible set of matched triples. Note that this
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design is not the same as a subquery, because an entirely new query, such as
a SELECT-in-a-SELECT query, is not allowed. This situation is better explained
as a subgraph query, where we’re allowed to insert a graph pattern within a
larger graph pattern.

The simplest test case for using named graphs is the inclusion of an empty
graph pattern (note the empty curly brackets), which should return a list of
each named graph (since ?g is the only declared variable). Before executing,
make sure you click the Reset button located in the lower right-hand corner of
Figure 6-4 to reset all the query parameters.

SELECT ?g

FROM NAMED <http://www.w3.org/People/Berners-Lee/card>

FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?g {}

}

The number of graph IRIs has been cut in half for simplicity as well
as protection against DBpedia’s query timeout threshold. Nevertheless, this
query fails in DBpedia (complaining of ?g not being assigned) unless we add
a triple statement to the named graph’s pattern.

SELECT DISTINCT ?g

FROM NAMED <http://www.w3.org/People/Berners-Lee/card>

FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?g {?empty1 ?empty2 ?empty3}

}

This query returns all five IRIs of the named graphs. All of these named
graph IRIs were copied from Tim Berner-Lee’s FOAF file, but you could use
any resolvable IRIs in their place. Two final examples show how we can have
graph patterns targeted for all named graphs or a chosen few.

Let’s look at all the FOAF files of Tim’s friends and see what nicknames
they have. Notice the use of blank nodes, which was covered in Chapter 4.
In SPARQL queries, blank nodes references (for example, :blank1) do not
correspond to an actual blank node in a graph. Rather, they act like variables
in that they can be bound to any IRI, but blank nodes cannot be directly
referenced like variables, such as their inclusion in a SELECT statement. See the
sidebar ‘‘Utility of Blank Nodes’’ for more information.
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UTILITY OF BLANK NODES

Blank nodes are just as useful in queries as they are in regular triple stores.
They allow us to connect triples without caring about the connecting resource
itself. Blank nodes aren’t recognized by SELECT * or DESCRIBE * queries,
meaning that even though a blank node can hold any type of RDF data, like a
variable, such data will not be included in any result sets that come back,
unlike a variable.

There are two ways to create a blank node: either combining an underscore,
a colon, and a series of alphanumeric characters (such as :blank node 9) or
using square brackets. Note that square brackets can have any amount of white
space in-between but can be used only once. If repeated use is required, use
the first type of labeled blank nodes. The following example is a quick
reference on usage, where each row is equivalent.

LABELED BLANK NODES ANONYMOUS

:a9 :property1 object1 . [ ] :property1 object1

OR [ :property1 object1 ]

:empty6 0 :property1 object1 .

:empty6 0 :property2 object2 .

[ :property1 object1 ]

:property2 object2 .

subject1 :property1 :none .

:none :property2 object2 .

subject1 :property1 [

:property2 object2 ] .

:silent :property1 object1;

:property2 object2;

[ :property1 object1;

:property2 object2 ] .

:ghost :property1 object1,

object2;

[ :property1 object1,

object2 ] .

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT *

FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://www.isi.edu/∼gil/foaf.rdf>
FROM NAMED <http://www.ivan-herman.net/foaf.rdf>

FROM NAMED <http://www.kjetil.kjernsmo.net/foaf>

FROM NAMED <http://www.lassila.org/ora.rdf>

FROM NAMED <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?originGraph {

:blank1 foaf:knows :blank2.
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:blank2 rdf:type foaf:Person;

foaf:nick ?nickname;

foaf:name ?realname

}

}

The results, shown in Table 6-4, are pretty modest. The named graph is
given along with all the nickname/realname pairs found at that resource. We
removed the uninteresting entries for the sake of brevity.

Table 6-4 Named Graph Nickname Query

ORIGINGRAPH NICKNAME REALNAME

http://www.kjetil.kjernsmo.net/foaf nacho Michael Nachbaur

http://www.kjetil.kjernsmo.net/foaf ’Moe’ Jörg Walter

http://www.kjetil.kjernsmo.net/foaf phish108 Christian Glahn

http://www.dajobe.org/foaf.rdf zool Jo Walsh

http://heddley.com/edd/foaf.rdf clurr Claire Rowland

http://heddley.com/edd/foaf.rdf klurr Claire Rowland

It’s also possible to target a single-named graph as we look for all the
nicknames in just Tim’s FOAF file. The default graph must not be queried
(since we have a single named graph), so we must remove any URI in the
Default Graph URI textbox before execution.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?nickname

WHERE {

GRAPH <http://www.w3.org/People/Berners-Lee/card> {

:blank3 foaf:nick ?nickname

}

}

As expected, this query returns a small, single-column table of four nick-
names located only in Tim’s FOAF file.

Query Modifiers
Before we move on to the other query forms, it is important to understand the
various SPARQL modifiers and how they can improve your queries, in terms
of both better results and performance. Modifiers are keywords that affect
the result set that is returned from a given query, allowing queries to hone
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their scope and reach. We’ll focus first on detailing the modifiers DISTINCT,
REDUCED, ORDER BY, OFFSET, LIMIT, FILTER, OPTIONAL, and UNION by explaining
their definition and usage. We’ll use examples based on SELECT queries since
that is where we have had the most exposure so far.

DISTINCT

The DISTINCT modifier eliminates duplicate query solutions, not individual
RDF terms. Let’s continue to use DBpedia but return to the last Washington
query. Make sure you enter http://dbpedia.org in the Default Graph URI
input box. This example binds only the picture URI and removes the DISTINCT

keyword:

# George Washington’s occupation(s), birthplace(s) and image(s)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?picture

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

}

This query still returns the same eight duplicates as before. To understand
why, this query uses the exact same graph pattern as before (that is, the
WHERE clause is identical), but our SELECT clause isn’t showing all the variable
bindings from before. Internal to DBpedia’s SPARQL processor, there still
are eight unique graph solutions that match the graph pattern, but our
query’s SELECT clause specifies only that the result set should contain picture

bindings.
Applying the DISTINCT keyword will remove the duplication problem and

return a single query solution:

# George Washington’s occupation(s), birthplace(s) and image(s)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?picture

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

}
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There are both good and bad issues to consider when using DISTINCT. On
the good side, DISTINCT reduces our data set as well as saves our endpoint
from utilizing unnecessary bandwidth. In addition, the absence of DISTINCT
can be useful for aggregation, such as indirectly counting the number of triples
in a result set for proper sum operations. On the bad side, using DISTINCT can
hide both the amount of data found by the endpoint and obfuscate why excess
time was needed to return it. Don’t be tempted to add the DISTINCT keyword
to cover up a poorly formed query if you aren’t expecting duplicate results.
Chances are you need to focus on your query pattern. We’re not implying that
the DISTINCT keyword isn’t always necessary but rather indicating to exercise
caution in its use.

REDUCED

REDUCED is an interesting modifier, as its inclusion does not compel the end-
point to return a different result set from a query without the REDUCED keyword.
It directs the SPARQL processor that if there are duplicate bindings (for exam-
ple, eight bindings of http://upload.wikimedia.org/wikipedia/commons/

b/b6/Gilbert Stuart Williamstown Portrait of George Washington.

jpg to ?picture), the endpoint may reduce the result set to any number of
solutions between at least one and the maximum possible (eight, in our
Washington query). If only everything were this easy!

REDUCED gives processors the opportunity to implement DISTINCT function-
ality without being forced to do so (as DISTINCT requires) if it may have
a negative impact on the query or query performance. It’s an opportunistic
result set reduction function that allows the query processor to omit duplicate
query solutions if it prefers to do so. This design is a tradeoff between the cost
of performing the query and handling the result set against the cost of the
client processing the result set. In our experience, REDUCED is rarely used since
SPARQL clients typically want consistent and repeatable results, achieved
through the use of DISTINCT or no modifier at all.

ORDER BY

The modifier ORDER BY applies only to SELECT queries and directs the processor
to order the result set according to one or more variables or expressions. RDF
graphs, such as those returned by DESCRIBE and CONSTRUCT, are inherently
unordered and are thus unaffected by ORDER BY. ASK queries return only a
boolean statement, so ordering is unnecessary.

ORDER BY allows result sets to be sorted by variable bindings or expressions
either in ascending or descending order based on two optional order modifiers,
ASC() and DESC(). ASC() uses the less-than (<) operator for comparison of
terms in ascending order, and DESC()uses the greater-than (>) operator for
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comparison of terms in descending order. In the case of ASC(), a set of string
bindings or resources will sort alphabetically, whereas integers will sort by
numerical value; DESC() performs the opposite steps. If the variable data
types aren’t known, SPARQL uses a combination of string collation, numeric
type promotions, and subtype substitution to determine which comparison
operator to employ. In addition, ORDER BY can sort on multiple variables based
on the order in which they are listed, all in a single query.

ORDER BY gives developers an easy way to compare result sets to each other
or to other types of data in a consistent, repeatable manner. Returning to our
original Washington facts example, we’ll order the results first in ascending
order by birthLoc, followed by descending order by job. We don’t need to
wrap the birthLoc variable with the ASC()modifier because, by default, ORDER
BY uses ASC():

# George Washington’s occupation(s), birthplace(s) and image(s)

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?job ?birthLoc ?picture

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

} ORDER BY ?birthLoc DESC(?job)

Our query returns the following output (see Table 6-5) as expected (the
results use the prefix r for http://dbpedia.org/resource/ and w for http://
upload.wikimedia.org/wikipedia/commons/b/b6/ for easier viewing).

Data Streaming with OFFSET and LIMIT

The OFFSET and LIMIT modifiers manage large result sets. So far, our sample
queries have always dealt with small amounts of data (how many places can
Washington have been born anyway?), easily returned in a single result set.
Retrieving all results at once is not realistic or tenable for large data sets,
something that should be considered given the global scope of the Semantic
Web. The idea of streaming results for performance and scalability reasons
was identified early on by the W3C’s RDF Data Access Working Group and is
satisfied with the use of the OFFSET and LIMIT keywords. The precondition for
any query using OFFSET and LIMIT is the required addition of ORDER BY, since
streaming depends on well-ordered and repeatable results. Thus, SPARQL’s
streaming capability is limited to SELECT queries, effectively barring RDF
triples from being streamed. As a developer, if you need the results in an RDF
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graph, you will need to transform SELECT result sets into RDF statements on
the client side (through an XSLT, for example) as a workaround.

Table 6-5 An Ordered Result Set

JOB BIRTHLOC PICTURE

r:Soldier r:British America w: Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:British America w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Colonial Beach
%2C Virginia

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Colonial Beach
%2C Virginia

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Colony of Virginia w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Colony of Virginia w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:United States of
America

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:United States of
America

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Soldier r:Westmoreland County
%2C Virginia

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

r:Farmer r:Westmoreland County
%2C Virginia

w:Gilbert Stuart Williamstown
Portrait of George Washington.jpg

OFFSET is an integer that declares the starting point from which to return
results, relative to a numbering scheme based on a larger set of solutions.
LIMIT is an integer that caps the number of returned query solutions. Using
the two modifiers together allows for queries that will always return identical
results over time (assuming the underlying RDF data doesn’t change). By both
looping over the number of query solutions returned and increasing OFFSET’s
value by that same number, eventually the entire result set can be retrieved.
Loop execution stops when the number of query solutions returned is smaller
than the value of LIMIT. The following pseudocode and Figure 6-7 provide
additional detail.

limit=30 (the value is based on the capabilities of your system)

offset=0 (queries with an OFFSET of zero have no side effects)
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resultCount=0

WHILE resultCount NOT LESS THAN limit

results = executeQuery("PREFIX ... LIMIT <limit> OFFSET <offset>")

resultCount = count(results)

appendResults(results)

offset = offset + resultCount

ENDWHILE

Note that SPARQL doesn’t support or require a transactional architecture. A
data store that supports transactions follows the guidelines of ACID: atomicity,
consistency, isolation, and durability. In short, there is no guarantee that a
particular slice of data (a slice is defined as a result set based on a SPARQL
query with OFFSET and LIMIT parameters) will remain unchanged even if the
query remains the same and is issued in quick succession (see Figure 6-7).
The underlying data may be mutable to the point that it could change in the
middle of the endpoint’s processing of the query.

Flexible Querying with FILTER and OPTIONAL

Up to this point, we have only been able to issue SELECT queries using
graph patterns that matched exactly the triples that exist in DBpedia. In
addition, query matching was an all-or-nothing proposition; results were
returned only if all the variables were bound. These constraints are highly
restrictive and severely limit the data returned from an endpoint. SPARQL
uses the keywords FILTER and OPTIONAL to handle these all-or-nothing
scenarios, invaluable additions for real-world query development. We
will cover FILTER in the following section and OPTIONAL in the next
section.

FILTER

FILTER evaluates boolean expressions and removes any query solutions
from the result set where the FILTER expressions return false. If the result
of a FILTER evaluation is true and the remaining portions of the graph
pattern match, then all applicable RDF data is returned. So filtering is
still an all-or-nothing graph-matching situation, yet it introduces query
flexibility.

All SPARQL expressions come from either a subset of the operators and
functions that are based on XQuery and XPath or special operators defined
specifically for SPARQL. We will not cover all of the allowable expressions in
this chapter because of the overwhelming number of available operators, but
they are listed in Appendix D. If you aren’t knowledgeable about XQuery or
XPath, we recommend that you familiarize yourself with the basics of both
technologies before continuing.
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<sparql ...>
 <head>
 <varible name=.../>
  ...
 </head>
 <results distinct="false" ordered="true">
  <result>
  <binding name=...></binding>
  ...
  </result>
  <result>
   <binding name=...></binding>
  ...
  </result>
  ...
 </results>
</sparql>

offset = 0
limit = 30

1st

2nd

<sparql ...>
 <head>
 <varible name=.../>
  ...
 </head>
 <results distinct="false" ordered="true">
  <result>
  <binding name=...></binding>
  ...
  </result>
  <result>
   <binding name=...></binding>
  ...
  </result>
  ...
 </results>
</sparql>

offset = 30
limit = 30

31st

32nd

<sparql ...>
 <head>
 <varible name=.../>
  ...
 </head>
 <results distinct="false" ordered="true">
  <result>
  <binding name=...></binding>
  ...
  </result>
  <result>
   <binding name=...></binding>
  ...
  </result>
  ...
 </results>
</sparql>

offset = n
limit = 30

n + 1

n + 2

<head>
remains

consistent

Figure 6-7 Decomposing SPARQL XML results when streaming data
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The following example illustrates a simple FILTER example. The query will
return any RDF relationships (personal, political, commercial) that are relevant
during Washington’s last term of office. In the United States, presidential terms
are limited to four years.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?prop ?object

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:presidentStart ?start;

?prop ?object.

FILTER(xsd:integer(?start) + 4 <= xsd:integer(?object))

}

The FILTER clause can be located anywhere in the WHERE clause. The same
results will be observed whether it is listed as the first or last statement. We use
the casting operation of xsd:integer to assure correct comparison operations
and to view the results as listed in Table 6-6.

SPARQL supports three major classes of operations: unary, binary, and
trinary (aka ternary). Unary operations cover logical NOT as well as unary
addition and subtraction (setting numeric values either positive or negative).
Binary operations cover inequalities, logical AND and OR, the core mathemat-
ical functions (addition, subtraction, division, and multiplication), and REGEX
for regular expressions. There is only a single trinary operator: REGEX. It
differs from the binary REGEX in that the trinary form can also take flags as a
parameter. All these operations and functions are laid out in Appendix D.

Through extensible value testing (http://www.w3.org/TR/rdf-sparql-
query/#extensionFunctions), FILTER provides a way for SPARQL processors
to extend the language by implementing new functions not currently
supported in the SPARQL recommendation. This allows vendors to provide
capabilities that distinguish their endpoints from competitors’ without explicit
requirements to be interoperable.

OPTIONAL

The OPTIONAL modifier allows additional bindings to be added to a result
set if they are found but will not remove any query solutions if the optional
bindings are not found. OPTIONAL clauses, just like WHERE clauses and GRAPH

statements, have their own graph pattern scope, delineated by curly brackets
({}). By stating that certain triples are optional, a query solution can now
have unbound variables without affecting other variables. SELECT queries will
continue to return table-based result sets, but unbound variables will appear as
empty cells. These cells do not contain a null or nil parameter; it is the absence
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of any value at all that makes the result set appear as such. The DESCRIBE and
CONSTRUCT forms will not return or add triples that involve unbound variables.

Table 6-6 Activities in Washington’s Later Years

PROP OBJECT

http://dbpedia.org/property/presidentEnd 1797

http://dbpedia.org/property/stateStart 1794

http://dbpedia.org/property/stateStart 1795

http://dbpedia.org/property/warStart 1795

http://dbpedia.org/property/warStart 1796

http://dbpedia.org/property/treasuryStart 1795

http://dbpedia.org/property/justiceEnd 1794

http://dbpedia.org/property/justiceEnd 1795

http://dbpedia.org/property/justiceEnd 1797

http://dbpedia.org/property/postEnd 1795

http://dbpedia.org/property/postEnd 1797

http://dbpedia.org/property/warEnd 1794

http://dbpedia.org/property/warEnd 1795

http://dbpedia.org/property/warEnd 1797

http://dbpedia.org/property/justiceStart 1794

http://dbpedia.org/property/justiceStart 1795

http://dbpedia.org/property/postStart 1795

http://dbpedia.org/property/vicePresidentEnd 1797

http://dbpedia.org/property/stateEnd 1793

http://dbpedia.org/property/stateEnd 1795

http://dbpedia.org/property/stateEnd 1797

http://dbpedia.org/property/treasuryEnd 1795

We’ll revisit some of those previous queries and add OPTIONAL blocks to
show how they can affect our results.

Our first Quickstart looked at all locations that have been named
after George Washington. We limited our search based on the property
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http://dbpedia.org/property/namedFor. It turns out there is another RDF
property, http://dbpedia.org/property/blankInfo, that states a township
in Pennsylvania is also named after George Washington (we discovered this
relationship only through navigation, reiterating our point that one form of
information discovery is not always enough). We didn’t find this information
in our initial query because we didn’t know blankInfo was used in the same
manner as namedFor. In fact, who knows how any of the data we search is
structured? That leads into an important note: We don’t always have insight
into how people store their RDF data, yet we need to be able to query it as if we
did. Adding the OPTIONAL modifier will broaden the query to look for other
ways of discovering things that are named after George Washington. Notice
that there are multiple OPTIONAL statements. That is because we want each
pattern in each OPTIONAL block to stand alone. There is no relationship
between dbprop:blankInfo and dbprop:namedFor such that they should be
in the same graph pattern. In fact, it would reduce our results if they were
together.

# Hopefully all of George Washington’s Namesakes!

PREFIX ex: <http://www.example.com/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

SELECT ?l1 ?l2 ?l3 ?l4

WHERE {

?person rdfs:label "George Washington"@en.

?l1 dbprop:namedFor ?person.

OPTIONAL { ?l2 dbprop:blankInfo ?person }

OPTIONAL { ?l3 ex:isNamedAfter ?person }

OPTIONAL { ?person ex:wasFamousAndGaveNameTo ?l4 }

}

Our modified query returns the data in Table 6-7 (the prefix r is used
for http://dbpedia.org/resource/ and the term lyComCtyPa for http://

dbpedia.org/resource/Washington Township%2C Lycoming County%2C

Pennsylvania for easier viewing).
When you run this query, it will return new data, seen under ?l2,

and could have returned others as well. Since ex:isNamedAfter and
ex:wasFamousAndGaveNameTo don’t exist in any triples, ?l3 and ?l4 remain
unbound. Yet their failure to find any matching data doesn’t affect all the
successful matches for ?l1 and ?l2. This means that we can now query with
a less-restrictive net into the web of data and not be so concerned if exact
matches aren’t found. Queries can become large, as developers often add
many FILTER and OPTIONAL keywords (as well as others) to find the specific
data they need.

You may have noticed that the variable ?person kept its scope for the entire
query. Earlier in the chapter we noted that variables have global scope. If they
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didn’t, the query would have had to reestablish the scope by repeating the
?person rdfs:label "George Washington"@en triple in each OPTIONAL clause.

Table 6-7 Finding More Namesakes for Washington

L1 L2 L3 L4

r:Grayson County%2C Kentucky lyComCtyPa

r:Washington County%2C Minnesota lyComCtyPa

r:Washington County%2C Utah lyComCtyPa

r:Washington County%2C Georgia lyComCtyPa

r:Washington County%2C Idaho lyComCtyPa

r:Washington County%2C Ohio lyComCtyPa

r:Washington Parish%2C Louisiana lyComCtyPa

r:Washington County%2C Kentucky lyComCtyPa

The OPTIONAL modifier can help us discover more FOAF information on
Washington. Suppose that when we found a triple using foaf:name, there
would always be either exactly three associated FOAF triples (based on
foaf:img, foaf:mbox, and foaf:family name) or none at all. In this case, we
could state

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

?person foaf:name ?name.

OPTIONAL {

?person foaf:img ?img;

foaf:mbox ?mbox;

foaf:family name ?fName

}

}

For each query solution in our result set, either we would see ?img, ?mbox,
and ?fName bound in each case, or none of the three values would be bound
at all. Again, this is because the OPTIONAL block is a pattern graph that must
be matched exactly. A more realistic case is that we have no idea what FOAF
information is available, so we place every query line in its own OPTIONAL

clause.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {
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?person foaf:name ?name.

OPTIONAL { ?person foaf:img ?img }

OPTIONAL { ?person foaf:mbox ?mbox }

OPTIONAL { ?person foaf:family name ?fName }

}

There is at least one case of anomalous behavior noted by the W3C
working group that created the W3C SPARQL recommendation (http://
www.w3.org/TR/rdf-sparql-query/#convertGraphPattern). In one particular
test query where a doubly-nested filter and pattern were inside an OPTIONAL

block, the query could result in two different result sets.

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX x: <http://example.org/ns#>

SELECT ?title ?price

WHERE {

?book dc:title ?title .

OPTIONAL {

{

?book x:price ?price .

FILTER (?title = "TITLE 2") .

}

} .

}

We needn’t worry about such edge cases in typical efforts; this was a query
that came out of the W3C’s RDF Data Access Working Group as a way for
SPARQL endpoints to test their implementations.

UNION
UNION statements create an aggregate result set from the result sets of two
graph patterns. If we consider each triple in a graph pattern as an atomic
unit, a SPARQL endpoint must find the intersection of all the triples in that
pattern to return any data. Membership in this result set is loosened with
OPTIONAL statements and tightened with FILTER statements. UNION works well
with cases of mutual exclusion and situations when returning one particular
statement in a given set of statements is satisfactory. Suppose a query could
separate the identity of a person from robots by requesting a resource that
has a foaf:gender of either male or female and has a foaf:interest in
http://www.iamhuman.com or http://lovebeinghuman.org. UNION allows the
results of these two completely different graph patterns to be merged into a
single result set. UNION functionality can also be mimicked with FILTER and/or
OPTIONAL statements.

Here’s a concrete example of differentiating humans from robots.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *
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WHERE {

{ ?unknown foaf:gender "male" }

UNION

{ ?unknown foaf:gender "female" } .

{ ?unknown foaf:interest <http://www.iamhuman.com> }

UNION

{ ?unknown foaf:interest <http://lovebeinghuman.org> }

}

UNION statements can also be chained together. We can now use this tactic
on the previous query results found in Table 7-3. We know that each of the
named graphs in that query has various ways of describing what it knows
about friends. We can create several unique graph patterns based on the data
in each named graph and merge the results (merging usually makes more
sense with a CONSTRUCT query because we can dictate the resulting triples).
Forgive the use of the historic www.mindswap.org website, as it serves a good
purpose here.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ms: <http://www.mindswap.org/2003/owl/mindswap#>

SELECT DISTINCT *

FROM NAMED <http://www.kjetil.kjernsmo.net/foaf>

FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://www.isi.edu/∼gil/foaf.rdf>
FROM NAMED <http://www.ivan-herman.net/foaf.rdf>

FROM NAMED <http://www.lassila.org/ora.rdf>

FROM NAMED <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?originGraph {

# This pattern now returns information for everyone except

# www.mindswap.org.

{

:blank1 foaf:knows :blank2.

:blank2 rdf:type foaf:Person.

# If we find a foaf:Person, then make sure we either

# print the nickname and/or the name and/or the home page.

# If we had omitted the FILTER clause, then we could

# have returned a query solution containing ?originGraph

# and no other information!

OPTIONAL { :blank2 foaf:nick ?nick }.

OPTIONAL { :blank2 foaf:name ?rname }.

OPTIONAL { :blank2 foaf:homepage ?hpage }.

FILTER(bound(?nick) || bound(?rname) || bound(?hpage))

}
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# Here’s where we grab www.mindswap.org folks of all

# stripes. We are claiming that any friends we find

# will have triples declaring his/her name, home page and

# mailbox.

UNION {

{ :blank3 rdf:type ms:Affiliate }

UNION

{ :blank3 rdf:type ms:Alumni }

UNION

{ :blank3 rdf:type ms:Faculty }

UNION

{ :blank3 rdf:type ms:Programmer }

UNION

{ :blank3 rdf:type ms:Researcher }

UNION

{ :blank3 rdf:type ms:GraduateStudent }

UNION

{ :blank3 rdf:type ms:UndergraduateStudent } .

:blank3 foaf:name ?rname;

foaf:homepage ?hpage;

foaf:mbox ?mbox

}

}

}

By reusing variables such as ?rname and ?hpage, the result set in Table 6-8
looks uniform and consistent regardless of the resources each variable binds.
(The contents of Table 6-8 have been truncated and abridged for readability.)

Table 6-8 A More Perfect Union

ORIGINGRAPH NICK RNAME HPAGE MBOX

http://.../∼gil/foaf.rdf Jim Hendler

http://.../∼hendler/.../foaf.rdf vard

http://www.lassila.org/... http://...

http://www.dajobe.org/... zool Jo Walsh

http://www.dajobe.org/... jang Jan Grant http://...

http://www.mindswap.org/... Aaron Mannes http://... mailto: . . .

We would like to leverage the knowledge that all the various mindswap RDF
types to which we referred (Affiliate, Faculty, and so on) are subclasses of
Swapper (http://www.mindswap.org/2003/owl/mindswap). Instead of entering
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seven rdf:type statements that are joined by UNION statements, we could have
had a single :blank3 rdf:type ms:Swapper triple. This is possible as long as
there is a triple store with inference capabilities over our mindswap data. In
this case, the ms prefix’s IRI references the raw data without ever having an
inference engine pass over the data.

CONSTRUCT Essentials
CONSTRUCT allows us to ask queries and obtain our results in RDF; we query
using triples in a graph pattern and are returned a set of triples. All the
modifiers we’ve discussed so far are also applicable in CONSTRUCT queries,
except for DISTINCT, REDUCED, and the use of the asterisk for wildcard queries.
This seems like a much more natural way of handling RDF data. Unfortunately,
since we cannot order RDF data, we are limited in what we can do with the
data, such as streaming or comparing and contrasting various RDF results
without the need for a custom graph diff operation. Nevertheless, CONSTRUCT
is well adapted for data transformation such as ontology mapping, data
repurposing, and data mash-ups, areas we’ll cover in upcoming chapters.

Revisiting the query used for Table 6-9, we reformulate it using CONSTRUCT.
Besides the new query form, the biggest change here is that blank nodes
:blank2 and :blank3 have been replaced with ?person. This change guar-

antees that ?person will contain the same IRI throughout the query, and the
resulting graph will properly merge these triples based on this subject. If
:blank2 or :blank3 were kept in the query, the blank node values would

change for each triple, and certain statements would not merge properly (if,
for example, http://example.org/Joe has two mailboxes, blank nodes would
allow a result set of two triples with different subjects, modifying the original
intent of the data, and could be fixed only by equating the two triples with an
owl:sameAs statement).

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ms: <http://www.mindswap.org/2003/owl/mindswap#>

CONSTRUCT {

?person rdf:type foaf:Person;

foaf:name ?rname;

foaf:home page ?hpage;

foaf:nick ?nick;

foaf:mbox ?mbox.

}

FROM NAMED <http://www.kjetil.kjernsmo.net/foaf>

FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM NAMED <http://www.koalie.net/foaf.rdf>
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FROM NAMED <http://www.isi.edu/∼gil/foaf.rdf>
FROM NAMED <http://www.ivan-herman.net/foaf.rdf>

FROM NAMED <http://www.lassila.org/ora.rdf>

FROM NAMED <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?originGraph {

# This pattern now returns information for everyone except

# www.mindswap.org.

{

:blank1 foaf:knows ?person.

?person rdf:type foaf:Person.

# If we find a foaf:Person, then make sure we either

# print the nickname and/or the name and/or the home page.

# If we had omitted the FILTER clause, then we could

# have returned a query solution containing ?originGraph

# and no other information!

OPTIONAL { ?person foaf:nick ?nick }.

OPTIONAL { ?person foaf:name ?rname }.

OPTIONAL { ?person foaf:homepage ?hpage }.

FILTER(bound(?nick) || bound(?rname) || bound(?hpage))

}

# Here’s where we grab www.mindswap.org folks of all

# stripes. We are claiming that any friends we find

# will have triples declaring his/her name, home page and

# mailbox.

UNION {

{ ?person rdf:type ms:Affiliate }

UNION

{ ?person rdf:type ms:Alumni }

UNION

{ ?person rdf:type ms:Faculty }

UNION

{ ?person rdf:type ms:Programmer }

UNION

{ ?person rdf:type ms:Researcher }

UNION

{ ?person rdf:type ms:GraduateStudent }

UNION

{ ?person rdf:type ms:UndergraduateStudent } .

?person foaf:name ?rname;

foaf:homepage ?hpage;

foaf:mbox ?mbox

}

}

}

Data transformations enable graph patterns to pull the data we need and
then write a completely different CONSTRUCT graph pattern to place the variable
bindings in a new RDF configuration we choose. If, for instance, we decide that
the FOAF schema no longer fits our needs, we could issue a new query, listed



224 Part II ■ Foundations of Semantic Web Programming

here, that is identical to the previous query but with a different CONSTRUCT

pattern. The following query returns information in RDF with respect to
another friend-based schema found at www.example.com.

PREFIX myfriends: <http://www.example.com/2008/myfriends/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {

?person rdf:type myfriends:Humanoid;

myfriends:handle ?rname;

myfriends:homepage ?hpage;

myfriends:informalName ?nick;

myfriends:email ?mbox.

?mbox myfriends:isOwnedBy ?person.

?hpage myfriends:isManagedBy ?person.

}

FROM NAMED ...

This example shows how we can create and transform new RDF data
from existing triples. CONSTRUCT queries enable ontology transformation, data
repurposing, and basic federated queries (i.e., querying data from various
sources and returning a single RDF graph).

DESCRIBE Essentials
The DESCRIBE query form allows an endpoint to choose what RDF is contained
in the query result set, as restricted by the WHERE clause. The client does not
need to be aware of the underlying data’s RDF structure for a given endpoint,
and the endpoint is given more flexibility in the data it returns. To be more
specific on the former point, a client can utilize what it knows about the data
because DESCRIBE supports WHERE and FROM clauses; however, it is not required.
This query form is a return to navigating as a form of information discovery,
enabling clients to glean insight into one or more RDF data sets with minimal
specificity.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbpedia: <http://dbpedia.org/resource/>

DESCRIBE *

WHERE {

?person ?anyProperty dbpedia:George Washington

}

Executing this query at DBpedia returns thousands of triples, while the
similarly constructed query,

PREFIX dbpedia: <http://dbpedia.org/resource/>

DESCRIBE dbpedia:George Washington
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returns significantly less information! Our initial belief that providing a WHERE

clause in the first query would limit the potential results over the less-restricted
second query was wrong. The query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbpedia: <http://dbpedia.org/resource/>

DESCRIBE *

fails because the asterisk indicates that the endpoint should display all query
variables, yet we have not provided a WHERE clause with any variables.
Don’t be surprised if certain endpoints do not respond to a DESCRIBE query.
Some SPARQL query processors recognize the keyword, but haven’t put an
implementation in place.

ASK Essentials
ASK returns boolean values of true or false in response to a query. Given a
graph pattern, an endpoint can tell you whether or not the pattern exists in
the underlying data store. ASK queries can be mimicked by using a SELECT

query with an identical graph pattern and verifying the contents of the query
result set with a boolean check in software or code. ASK is a useful query form
because it allows the query processor to stop execution of a query as soon as
the processor is able to respond with a boolean answer. Not only does this
action reduce computational load on both the processor and the client, it also
saves bandwidth because the result set is limited to a single response.

ASK supports FROM and WHERE clauses. In the following example, we will see
whether Washington was president in the year 1795.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

ASK

WHERE {

?person rdfs:label "George Washington"@en;

dbprop:presidentStart ?startDate;

dbprop:presidentEnd ?endDate.

FILTER(xsd:integer(?startDate) < xsd:integer(’1795’) &&

xsd:integer(?endDate) > xsd:integer(’1795’))

}

The XML result tells us that he was, indeed, president (modified here for
readability).

<?xml version="1.0" ?>

<sparql xmlns=http://www.w3.org/2005/sparql-results#

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
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xsi:loc="http://www.w3.org/2001/sw/DataAccess/rf1/result2.xsd">

<head></head>

<boolean>true</boolean>

</sparql>

ASK queries enable the incremental development of queries. As an applica-
tion determines what data does or does not exist in an RDF data store using ASK

queries, it can craft a final query that will optimally require fewer resources to
execute as well as return a more precise result set.

SPARQL Entailment
Entailment can be defined as follows: Given a set of statements in graph A and
a set of statements in graph B, A entails B if every statement in B is also true in
A. Entailment is illustrated as a Venn diagram in Figure 6-8.

A

B

Figure 6-8 Venn diagram of entailment

Entailment is important as both a theoretical construct and a practical
limitation. There are different levels of entailment in SPARQL, which are
shown in Figure 6-9. Detailed definitions and proofs are available from
the W3C RDF Semantics Recommendation (http://www.w3.org/TR/rdf-
sparql-query/#sparqlBGPExtend); utilizing SPARQL doesn’t require an
in-depth understanding of the various levels of entailment other than how
they can affect your query results (see Figure 6-9). We shall discuss an
example next.

Entailment plays a role in determining how well a graph pattern is matched
by a SPARQL endpoint. If we look at an example of D-entailment, this is a
type of vocabulary entailment. Specifically, XSD typed and untyped literals
are seen as equivalent (and thereby improve our ability to match statements
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containing literals), which isn’t true under simple entailment. For example, an
RDF repository might contain several literal values for George Washington.

"George Washington"

"George Washington" ˆ ˆ xsd:string
"George Washington"@en

OWL Full entailment

extends

OWL DL entailment

OWL Lite entailment

D-entailment

RDFS entailment

RDF entailment

Simple entailment

extends

extends

extends

extends

extends

Figure 6-9 Ordering of SPARQL entailment

Endpoints that support only simple entailment would see each of these
literals as three separate and distinct values. Executing the query

# George Washington’s Namesakes

SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label>

"George Washington".

?location <http://dbpedia.org/property/namedFor> ?person

}

returns an empty result set because there are no literals marked strictly
as "George Washington", even though there are literals stored as "George

Washington"@en. A SPARQL endpoint that supports D-entailment or higher
entailment would return the same results for any of the three different literals
pertaining to George Washington.

These entailment limitations enable endpoints to determine their own level
of query specificity and accuracy as well as the amount of inference that
is permitted. Our advice is to create very precise queries; the more explicit
information you can add to your queries (such as language tags), the less
dependent you will be on the query-matching capabilities of your endpoint.
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Unsupported Functionality
SPARQL has quite a bit of flexibility and power to retrieve relevant data,
but there are some capabilities it doesn’t support. Among these unsupported
capabilities are the main themes of data modification, subquery support, and
aggregation.

Data Modification

A significant issue is that SPARQL supports only read-only access to data
without the ability to create, update, or delete triples. Some of the more
prominent suggestions for data modification support include the W3C
Member Submission SPARQL Update (http://www.w3.org/Submission/
2008/SUBM-SPARQL-Update-20080715/), also referred to as SPARUL, and
SPARQL+ (http://arc.semsol.org/docs/v2/sparql+). Both syntaxes
continue in the same vein as SPARQL and SQL, creating implementations
for keywords such as CREATE, DELETE, DROP, and INSERT. The issue for
data-updating capabilities has been noted by the RDF Data Access Working
Group, but it has been postponed since 2005. We won’t discuss data modifica-
tion through SPARQL since there isn’t a clear standard on approaching this
issue (yet). To be clear, RDF repositories support data creation, insertion, and
deletion, but not as part of the SPARQL query language.

Subqueries

SPARQL does not support subqueries but does support nested subgraphs
in queries. Subqueries allow more than one query form in a single query,
for example, using a SELECT statement in the WHERE clause of another SELECT

statement. Nested subgraphs are a different concept. They describe the use of
graph patterns inside other graph patterns, such as having OPTIONAL blocks
inside UNION graph patterns that are all part of a WHERE clause. We used several
cases of subgraphs in this chapter.

Aggregation

There is no support for aggregate functions (such as count, min, max, avg,
or sum) at the query-form level. SPARQL+ has support for some of these
functions, but it is not standardized.

The items listed in this section are not comprehensive but are rather a
sampling of some of the better-known issues facing SPARQL. For a full list
of issues, the Working Group maintains them at the W3C at http://www

.w3.org/2001/sw/DataAccess/issues.
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Summary

From navigation to searching to querying, there are many ways to discover
information. You learned about each of these forms, with a strong focus
on querying the Semantic Web through SPARQL. Using readily available
SPARQL endpoints, specific examples, and a detailed discussion of the query
language itself, you should have a good understanding of the technology and
tools that are available to find the semantic data that you need.





C H A P T E R

7

Adding Rules
‘‘Hell, there are no rules here—we’re trying to accomplish something.’’

—Thomas Edison

At this point, you’ve been exposed to a wide variety of knowledge represen-
tations, ranging from RDF to the latest version of OWL. Before the advent
of OWL 2, OWL 1 had limits on the amount of expressivity it could offer
users. One solution to this issue was to keep the OWL recommendations
unaltered but support the inclusion of rules to expand the expressive nature
of RDF/OWL data. In this chapter, you will learn about the need for rules to
augment OWL as well as a particular rule implementation called the Seman-
tic Web Rule Language (SWRL), whose Member Submission can be found at
http://www.w3.org/Submission/SWRL/. There will also be a short discussion
of Jena rules, a rule language specifically implemented for the Jena API.

Since Semantic Web rules were first proposed in 2003 and 2004, the Semantic
Web landscape has significantly changed. OWL 2, as discussed in Chapters 5
and 6, has addressed some of the shortcomings of the original OWL recommen-
dation and implements functionality previously unavailable. In addition, the
W3C chartered the Rule Interchange Format (RIF) Working Group to ‘‘produce a
core rule language plus extensions which together allow rules to be translated
between rule languages and thus transferred between rule systems.’’ There-
fore, RIF is not about developing the preeminent rule language but rather
considers the more difficult issue of rule interoperability between legacy rule
systems and the Semantic Web. The latter half of this chapter will introduce RIF
artifacts, including the Basic Logic Dialect (BLD) and the Production Rule Dialect
(PRD), providing insight into the future of W3C-based rule development. RIF
is not yet a W3C recommendation, but it is on track as some of the documents
are currently in ‘‘Last Call.’’

231
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In this chapter, you will:

Learn about several Semantic Web rule proposals

Familiarize yourself with SWRL, its syntax and examples of usage

Increase your knowledge about Jena rules

Learn about the direction and goals of RIF

Gain an understanding of the main features of RIF

What Are Rules?

A rule is a means of representing knowledge that often goes beyond OWL 1
or is easier to understand than what can be expressed using OWL 1. Rules in
the Semantic Web are typically conditional statements: if-then clauses. New
knowledge is added only if a particular set of statements is true. The rest of
this chapter will show you how to represent if-then clauses in the Semantic
Web via SWRL and Jena rules.

Reasons for Rules

As we’ve discussed in earlier chapters, the Semantic Web layer cake is built
on previous technologies and languages (for example, RDF, RDFS and OWL)
as much as possible, expanding expressivity at each level and allowing users
to use a given representation based on the amount of semantics needed for
a particular application. If we step back and look at what OWL 1 lacked, it
becomes clear why there has been a push for an additional level of expressivity
based on user-defined rules. Let’s look at some reasons for the rules.

No Support for Property Composition
An often-discussed issue with OWL 1 is the ‘‘uncle’’ problem, also known as
property chaining. It is impossible to determine whether individual A has an
uncle in individual B because that requires two pieces of information. First,
does A have a known parent? Second, does that known parent have a male
sibling? Rules support the concept that the existence of both of these two
pieces of data results in the creation of an uncle relationship. OWL 2 partially
solved this problem with property chains, which are described in Chapter 5,
‘‘Modeling Knowledge in the Real World.’’

Use of Built-ins
Built-ins allow for common transformations of data. For example, OWL 1
cannot check whether a URI has a datatype property that starts with the
word President and then use that information as the basis to add some new
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property to the same subject, such as isPresidentOf. This example of pattern
matching is just one simple example. Mathematical operations, conditional
checks, and datatype or unit conversions are some of the other typical needs
for built-ins.

Ontological Mediation
Chapter 6 covered the notion that a CONSTRUCT SPARQL statement could be
used to map RDF statements from one graph model to another, expanding the
possibility of mapping resources between different ontologies. This functional-
ity is limited, however. Literals cannot be transformed (such as concatenating
a new substring to a newly discovered string), and more complex translations
are difficult to express (if A knows B and B knows C and C hasFamilyMember

D, then assert D canTrust A).

Limiting Assumptions
It is often desirable to trigger certain data operations based on the existence (or
potentially the lack thereof) of information. A simple example noted previously
was the case of concatenation; however, operations don’t need to be limited to
string transformations. They could also cover a range of operations based on
mathematics, conditional verification, or datatype transformations.

Rules can be used to limit OWL’s open world assumption (using a tech-
nique known as negation as failure, or NAF) or to support the unique names
assumption. In the former case, imagine a rule that states:

If Andrew isn’t known to have a brother, then assert he is brotherless

In the latter case, imagine another rule that states:

If Person1 has a name of Andy and Person2 has a name of Andrew, then

assert Person1 and Person2 are different individuals

Having a separate rule for every pair of different names is hardly ideal, but
the point is that rules can axiomatize a unique names assumption. There are
very real use cases for supporting both the closed world and the unique names
assumptions. We see this every day in database systems. There is no clear
answer when one should and should not ignore the open world or unique
names assumptions. It is important to know that there are times when each is
appropriate and that the Semantic Web languages can support them.

Rule Languages

The Rule Markup Language (RuleML) Initiative focused on an XML-based
markup language for various types of rules (such as business, transformational,
or reactive). SWRL became a W3C Member Submission in 2004, combining
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work from the DARPA Agent Markup Language (DAML) program and
RuleML. Description Logic Programs (DLPs), as presented at the WWW 2003
conference, detailed the combination of description logics (OWL DL) and logic
programs (RuleML) as a potential area of growth. The Web Rule Language (WRL)
was submitted to the W3C in late 2005. Semantic Web Services Language (SWSL)
Rules came out the same year, also part of a joint DAML/EU effort. Most
recently, the RIF Working Group has been working toward a different goal,
looking for rule interoperability using implementable specifications.

The de facto standard language for Semantic Web rules is SWRL. SWRL
enjoys strong community recognition and tool support, has a large user base,
and is based on the work of some of the best-respected researchers in the field:
Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. This chapter will focus on SWRL as our model for
learning Semantic Web rules.

SWRL Essentials

SWRL is based on the OWL 1 DL and OWL Lite species, using a subset of
RuleML rules modeled on Horn clauses. SWRL predates OWL 2. The RuleML
subset supported in SWRL includes only unary and binary predicates, a
sensible choice, given OWL 1’s foundation in RDF.

A Horn clause represents the familiar if-then conditional statement more
formally referred to as implication. An implication is the combination of an
antecedent (commonly referred to as the body and akin to an if clause) and
a consequent (commonly referred to as the head and akin to a then clause).
Antecedents and consequents are made up of zero or more atoms. An atom
consists of any unary predicate (class inclusions such as ‘‘John belongs to class
Person’’), binary predicate (any type of object or datatype property), equality,
inequality, or built-ins, each of which will be described in detail later in this
chapter.

It seems odd that a head or body with no atoms might be considered a
valid implication, but it is allowable in the SWRL Member Submission. If an
antecedent has no atoms, then it evaluates to true, making all the statements
in the consequent true. This is no different from using OWL to make the same
assertions without a rule. In the case where the consequent has no atoms, then
no assertion will ever be made, and the rule evaluates to false. This means that
the empty consequent cannot be satisfied by any ontology and, by implication,
neither can its antecedent, so the rule is false. If the antecedent does match any
statements, then the ontology contains a logical inconsistency.

Horn clauses are any combination of statements in the antecedent that are
interpreted as a conjunction, or intersection, of those statements. In other words,
all of the statements must be simultaneously true to cause all of the atoms in
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the consequent to be true. Think of this as an if-then statement with multiple
boolean clauses joined by logical AND operators.

int a, b, c;

String filename = . . . ;

. . .

if (a == 5 && b > 4 && filename.startsWith("Rule")) {

c = 22 % b;

}

Disjunction (a logical OR operation) is not directly supported by SWRL but
can be implemented by splitting the disjunction into separate rules (a simple
operation that is part of Lloyd-Topor transformations). Duplicate consequents
are not an issue because RDF can handle duplicate statements. Using Java as
an example, a disjunction would start like this:

if (a == 5 || b > 4 || filename.startsWith("Rule")) {

c = 22 % b;

}

It could also be split into the following statements:

if (a == 5) {

c = 22 % b;

}

if (b > 4) {

c = 22 % b;

}

if (filename.startsWith("Rule")) {

c = 22 % b;

}

SWRL’s main goal was to provide expressivity not allowable by OWL 1
while maintaining compatibility with OWL’s syntax, semantics, and theoretical
model. As a W3C Member Submission, it became an input to the RIF Working
Group.

SWRL has three different syntaxes: one abstract and two concrete flavors
based on XML and RDF. The abstract syntax will be covered only for familiar-
ization; most of the chapter’s SWRL examples will be grounded in either the
XML or RDF concrete serializations.

The Abstract Syntax
The abstract syntax represents SWRL using a small number of Extended
Backus-Naur Form (EBNF) notations.

axiom ::= rule

rule ::= 'Implies(' [ URIreference ] { annotation } antecedent

consequent ')’
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antecedent ::= 'Antecedent(' { atom } ')’

consequent ::= 'Consequent(' { atom } ')’

atom ::= description '(' i-object ')’

| dataRange '(' d-object ')’

| individualvaluedPropertyID '(' i-object i-object ')’

| datavaluedPropertyID '(' i-object d-object ')’

| sameAs '(' i-object i-object ')’

| differentFrom '(' i-object i-object ')’

| builtIn '(' builtinID { d-object } ')’

builtinID ::= URIreference

i-object ::= i-variable | individualID

d-object ::= d-variable | dataLiteral

i-variable ::= 'I-variable(' URIreference ')’

d-variable ::= 'D-variable(' URIreference ')’

Don’t be too concerned if you can’t fully understand all of these statements.
We’ll discuss them in detail in the next section.

A human-readable syntax of SWRL rules can be utilized when XML or
RDF is too verbose or difficult to read. An implication is represented by an
arrow (→), logically connecting an antecedent to a consequent. Variables are
preceded by a question mark (?), similar to SPARQL notation. Atoms are
conjunctively joined with the caret mark ( ˆ ). Properties and built-ins (covered
later in the chapter) resemble method calls where the return value is usually
assigned to a variable.

If you wanted to express a long-time nemesis in our FOAF example, it could
look like the following example in our human-readable syntax (note the use
of reification). ?today holds today’s date:

Person(?p) ˆ Person(?nemesis) ˆ
dislikes(?p, ?nemesis) ˆ dislikes(?nemesis, ?p) ˆ
Statement(?statement) ˆ subject(?statement, ?p) ˆ
predicate(?statement, knows) ˆ object(?statement, ?nemesis) ˆ
startDate(?statement, ?knowsStartDate) ˆ
swrlb:addYearMonthDurationToDate

(?diff, ?knowsStartDate, "P10Y0M") ˆ
swrlb:greaterThan(?today, ?diff)

→ hasLongTimeNemesis(?p, ?nemesis)

Or it could look like this:

Implies(

Antecedent(

Person(I-variable(p))

Person(I-variable(nemesis))

dislikes(I-variable(p)

I-variable(nemesis))

dislikes(I-variable(nemesis)

I-variable(p))
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Statement(I-variable(statement))

subject(I-variable(statement)

I-variable(p))

predicate(I-variable(statement)

I-variable(knows))

object(I-variable(statement)

I-variable(nemesis))

startDate(I-variable(statement)

I-variable(knowsStartDate))

swrlb:addYearMonthDurationToDate(

D-variable(diff)

D-variable(knowsStartDate)

D-variable("P10Y0M"))

swrlb:greaterThan(D-variable(today)

D-variable(diff)))

Consequent(

hasLongTimeNemesis(I-variable(p)

I-variable(nemesis)))

)

Our nemesis example can be read, ‘‘If p and nemesis are of type Person
and both p and nemesis dislike each other and p has known nemesis for
over 10 years, then p is a long-time nemesis of nemesis.’’ It is a long rule,
but you’ll notice the chaining that occurs from one statement to the next in
the antecedent. Most rules you will write and observe will form a connected
subgraph as in this example.

Note that this is just one way to state this rule, and there could be some
issues with how it is implemented. This example assumes that simply because
the dislikes property is present between p and nemesis that it implies their
relationship has always been one of hostility for all the years they’ve known
each other. This may not be true and could be clarified with finer-grained
properties, such as using other properties that clearly delineate hate/like
between p and nemesis instead of relying solely on how long they have known
each other, or the inclusion of temporal tagging of relationships (see Chapter 13,
‘‘Managing Space and Time’’ for insights using concepts).

The XML Concrete Syntax
The XML syntax for SWRL is based on the OWL XML Presentation Syntax (a
detailed overview is located at http://www.w3.org/TR/owl-xmlsyntax) as well
as RuleML (the XML Schema can be found at http://www.ruleml.org/xsd/0.8
/ruleml-datalog-monolith.xsd). Interestingly, the former syntax specifi-
cation is currently released as a W3C Note (it is not part of the OWL
Recommendation), and the latter is not under any sort of formal W3C purview.

The SWRL XML syntax uses the OWL XML Ontology root element and
some of its subelements:
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VersionInfo

PriorVersion

BackwardCompatibleWith

IncompatibleWith

Imports

Annotation

Class

EnumeratedClass

SubClassOf

EquivalentClasses

DisjointClasses

DatatypeProperty

ObjectProperty

SubPropertyOf

EquivalentProperties

Individual

SameIndividual

DifferentIndividuals

Our focus will be on the RuleML element additions.

N O T E The SWRL Submission does not have any limitations or guidelines
regarding either the ordering of rules or the ordering of atoms within a rule. While
certain SWRL processors may utilize an approach based on file ordering (that is,
rules/atoms located earlier in the file are read before rules/atoms toward the end
of a file), no assumptions are made by the SWRL specification.

The following sections will cover all the SWRL XML elements defined by the
SWRL schema (http://www.w3.org/Submission/SWRL/swrlx.xsd). We begin
with the only two legal element extensions to the Ontology root element: var
and imp. In the following examples, ruleml denotes the http://www.w3.org

/2003/11/ruleml namespace and swrlx denotes the http://www.w3.org/2003
/11/swrlx namespace.

var

ruleml:var, short for variable declaration, is a xsd:string-based declaration
of a variable. It is considered good form to start variables with a lowercase
alphabetic character. For example:

<ruleml:var>firstVariable</ruleml:var>
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imp

ruleml:imp, short for rule implication, defines a rule. A rule is the combination
of one head element and one body element, whereby the head is true if the
body is true. A rule label ( rlab) and OWL annotations (<annotation>) are

optionally allowed.
Allowed subelements are rlab, body, head, and one or more OWL

annotations. For example:

<ruleml:imp>

<ruleml: rlab ruleml:href="#importantRuleName"/>

<ruleml: body>

. . .

</ruleml: body>

<ruleml: head>

...

</ruleml: head>

<ruleml:imp>

rlab

This optional element for a rule label, has a required attribute of href, which
takes a valid URI reference as input. For example:

<rule: rlab ruleml:href="#ruleName"/>

body

The body element describes the antecedent or the if clause of a rule. It contains
zero or more atoms (remember that zero is a special case, and typically a rule
will have at least one atom), where an atom is one of the following subelements
(note the change in namespace): swrlx:classAtom, swrlx:datarangeAtom,
swrlx:individualPropertyAtom, swrlx:datavaluedPropertyAtom, swrlx:

sameIndividualAtom, swrlx:differentIndividualsAtom, or swrlx:builtin-

Atom. Recalling our discussion of Horn clauses, every atom of the body

statement must be true for the head element to be true. The following
example shows how conjunction is written. In this case, there are two atoms
that must be satisfied before the consequent will be true.

<ruleml: body>

<swrlx:individualPropertyAtom>

...

</swrlx:individualPropertyAtom>

<swrlx:builtinAtom>

...

</swrlx:builtinAtom>

<ruleml: body>
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head
The head element describes the consequent, or the then clause, of a rule.
It contains zero or more atoms (remember that zero is a special case, and
typically a rule will have at least one atom), where an atom can be described
as one of the following subelements (note the change in namespace):
swrlx:classAtom, swrlx:datarangeAtom, swrlx:individualPropertyAtom,
swrlx:datavaluedPropertyAtom, swrlx:sameIndividualAtom, swrlx:dif-

ferentIndividualsAtom, or swrlx:builtinAtom. If the body of the rule
evaluates to true, every atom in the head element will be evaluated. The
following example shows how conjunction is written. In this case, there are
three atoms that will be asserted (this could mean these statements are added
to a knowledgebase or returned as part of an RDF result set) if the antecedent
evaluates to true.

<ruleml: head>

<swrlx:classAtom>

...

</swrlx:classAtom>

<swrlx:builtinAtom>

...

</swrlx:builtinAtom>

<swrlx: sameIndividualAtom>

...

</swrlx: sameIndividualAtom>

<ruleml: head>

classAtom
A classAtom can refer to either an existing class or it can define a new class,
adhering to OWL 1 semantics and syntax. It is followed by a single reference
to a specific individual or a previously defined variable. If classAtom appears
in a body element, then that named individual or variable must belong to that
class for the atom to be true. If it appears in the head element, then that named
individual or variable will now be an instance of that class. For example:

<swrlx:classAtom>

<owlx:Class owlx:name="Person" />

<ruleml:var>p</ruleml:var>

<!-- p must be previously declared -->

</swrlx:classAtom>

<swrlx:classAtom>

<owlx:Class owlx:name="Person" />

<owlx:Individual owlx:name="#JohnHebeler" />

</swrlx:classAtom>

<swrlx:classAtom>

<owlx:ObjectRestriction owlx:property="&foaf;mbox">

<owlx:minCardinality value=1 />
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</owlx:ObjectRestriction>

<ruleml:var>m</ruleml:var>

<!-- m must be previously declared -->

</swrlx:classAtom>

datarangeAtom

The datarangeAtom element is not defined in the OWL XML syntax specifica-
tion but lists either a specific single datatype or a list of datatypes followed by
a previously defined variable. If datarangeAtom appears in a body element,
then the associated variable must have that datatype or value for the atom to
be true. If it appears in the head element, then the variable will now have that
datatype or value. For example:

<swrlx:datarangeAtom>

<owlx:Datatype owlx:name="&xsd;string" />

<ruleml:var>name</ruleml:var>

<!-- name must be previously declared -->

</swrlx:datarangeAtom>

<swrlx:datarangeAtom>

<owlx:OneOf>

<owlx:DataValue

owlx:datatype="&xsd;string">John</owlx:DataValue>

<owlx:DataValue

owlx:datatype="&xsd;string">Matt</owlx:DataValue>

<owlx:DataValue

owlx:datatype="&xsd;string">Ryan</owlx:DataValue>

<owlx:DataValue

owlx:datatype="&xsd;string">Andrew</owlx:DataValue>

</owlx:OneOf>

<ruleml:var>fName</ruleml:var>

<!-- fName must be previously declared -->

</swrlx:datarangeAtom>

individualPropertyAtom

individualPropertyAtom relates a specific individual or variable to another
specific individual or variable through an object property. Whichever
individual or variable is listed first becomes the subject of the property,
and whichever individual or variable is listed second becomes the object.
individualPropertyAtom requires the use of a property attribute. If this atom
appears in the body element, then the given triple must exist for the atom
to be true. If it appears in the head, then that triple will be asserted. For
example:

<swrlx:individualPropertyAtom property="hasUncle">

<owlx:Individual owlx:name="#JohnHebeler" />
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<owlx:Individual owlx:name="#TomHebeler" />

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom property="hasUncle">

<owlx:Individual owlx:name="#JohnHebeler" />

<ruleml:var>uncle</ruleml:var>

<!-- uncle must be previously declared -->

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom property="isUncleOf">

<ruleml:var>uncle</ruleml:var>

<!-- uncle must be previously declared -->

<owlx:Individual owlx:name="#JohnHebeler" />

</swrlx:individualPropertyAtom>

datavaluedPropertyAtom

datavaluedPropertyAtom relates a specific individual or a literal value through
a datatype property. The specific individual or variable must be listed first
and the literal value second. datavaluedPropertyAtom requires the use of a
property attribute. If this atom appears in the body element, then the given
triple must exist for the atom to be true. If it appears in the head, then that
triple will be asserted. For example:

<swrlx:datavaluedPropertyAtom property="&foaf;birthday">

<owlx:Individual owlx:name="#MattFisher" />

<owlx:DataValue

owlx:datatype="&xsd;string">06-01</owlx:DataValue>

</swrlx:datavaluedPropertyAtom>

sameIndividualAtom

This atom asserts equality between two or more specific individuals or vari-
ables (the SWRL Submission allows for zero or more specific individuals
or variables, but zero or one doesn’t make sense when implementing). This
assertion is equivalent to using owl:sameAs between each pair of individuals
and/or variables. For example:

<swrlx:sameIndividualAtom>

<owlx:Individual owlx:name="#JohnHebeler" />

<owlx:Individual owlx:name="#JohnnyHebeler" />

</swrlx:sameIndividualAtom>

<swrlx:sameIndividualAtom>

<owlx:Individual owlx:name="#JohnHebeler" />

<ruleml:var>person</ruleml:var>

<ruleml:var>author</ruleml:var>

<!-- person and author must be previously declared -->

</swrlx:sameIndividualAtom>
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differentIndividualsAtom

This atom will assert inequality between two or more specific individuals
and/or variables (the SWRL Submission allows for zero or more specific
individuals and/or variables, but zero or one doesn’t make sense when imple-
menting). This assertion is equivalent to using owl:differentFrom between
each pair of individuals and/or variables. For example:

<swrlx:differentIndividualAtom>

<owlx:Individual owlx:name="#JohnHebeler" />

<owlx:Individual owlx:name="#JohnnyHebeler" />

</swrlx: differentIndividualAtom >

<swrlx:differentIndividualAtom>

<owlx:Individual owlx:name="#JohnHebeler" />

<ruleml:var>person</ruleml:var>

<ruleml:var>author</ruleml:var>

<!-- person and author must be previously declared -->

</swrlx:differentIndividualAtom>

builtinAtom

The builtinAtom element declares built-in functions. This element requires
the builtin attribute, which takes a URI that identifies the built-in operation.
Built-ins will be covered later in this chapter, but here are some examples of
syntax:

<swrlx:builtinAtom

swrlx:builtin="&swrlb;greaterThanOrEqual">

<ruleml:var>ageOfJohn</ruleml:var>

<ruleml:var>ageOfMatt</ruleml:var>

</swrlx:builtinAtom>

<swrlx:builtinAtom swrlx:builtin="&swrlb;add">

<ruleml:var>totalAge</ruleml:var>

<ruleml:var>mattAge</ruleml:var>

<ruleml:var>johnAge</ruleml:var>

<ruleml:var>andrewAge</ruleml:var>

<ruleml:var>ryanAge</ruleml:var>

</swrlx:builtinAtom>

The RDF Concrete Syntax
The RDF concrete syntax mirrors the XML syntax in its constructs, so we
don’t cover it with the same degree of detail in this chapter. In addition, some
of our examples in the rest of this chapter use the RDF syntax, so you will
gain exposure by reading those sections as well as using Protégé for the same
examples.
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In our experience, developers tend to represent their SWRL rules in RDF
rather than XML syntax. This may be in part because RDF SWRL rules can
be saved in both triple stores and ontology files like any other RDF data.
In addition, the older version of Protégé, the 3.x series, supported a SWRL
editor that serializes SWRL in the RDF format using the SWRLTab, located at
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab.

For more information on the RDF concrete syntax, the SWRL submission
has more details. There is also an RDF schema for SWRL (http://www.w3
.org/Submission/SWRL/swrl.rdf) as well as an OWL 1 ontology (http://www
.w3.org/Submission/SWRL/swrl.owl).

Built-ins
SWRL built-ins expand the expressive power of SWRL and are a main moti-
vator for the use of SWRL. The majority of the remaining sections in this
chapter detail built-ins in example form, and the full list of built-ins specified
in the SWRL submission appears in Appendix C. Built-ins are straightfor-
ward and mainly correspond to traditional operations available in most major
programming and scripting languages. They cover the following areas:

Comparisons

Mathematical transformations

List operators (not recommended since they cannot be used in OWL 1
Lite or DL)

Modifiers for strings, dates, and times

Boolean and URI checks

URI construction

We cover some examples here in abstract syntax so you can become famil-
iar with their form and function. You should use http://www.w3.org/2003

/11/swrlb for the built-in namespace along with the recommended swrlb

prefix.

Examples

Johnny just swiped his credit card at the grocery store. Can he purchase that
pack of cigarettes? He needs to be an 18-year-old resident of the state. In this
case, ?customer refers to Johnny and ?today holds today’s date.

hasAddress(?creditCardMachine, ?ccAddress) ˆ
hasAddress(?customer, ?custAddress) ˆ
hasState(?ccAddress, ?ccState) ˆ
hasState(?custAddress, ?custState) ˆ



Chapter 7 ■ Adding Rules 245

swrlb:equal(?custState, ?ccState) ˆ
hasBirthday(?customer, ?bDate) ˆ
swrlb:subtractYearMonthDurations(?diff, ?today, ?bDate) ˆ
swrlb:greaterThanOrEqual(?diff, "P18Y0M")

→ LegalCigaretteBuyer(?customer)

Create a formal greeting based on a set of personal facts.

foaf:Person(?person) ˆ
foaf:gender(?person, "female") ˆ
foaf:name(?person, ?name)

→ swrlb:stringConcat(?s, "Dear Ms. ", ?name, ":") ˆ
hasFormalGreeting(?person, ?s)

DL-Safe Rules
While the discussion so far has focused on the positive aspects of SWRL’s
broad expressiveness, the biggest downside is the loss of decidability. It
may seem counterintuitive that SWRL, which is purposely based on the
decidable dialects of OWL, could so easily cause an ontology to become
undecidable.

Look at the following example in the abstract syntax:

Person(?person) ˆ friendCount(?person, ?count) ˆ
swrlb:add(?countByOne, ?count, 1) → friendCount(?person, ?countByOne)

This rule tries to increase the friendCount property by one. OWL 1 did not
have a good way to explicitly state count. Instead, it is much better to generate
this value dynamically through code by first executing a SPARQL query for
the number of friendCount(?x, ?y) statements (SPARQL doesn’t support a
COUNT statement like SQL) and second using that number without saving it
as an explicit statement. If this rule were to be run without any type of checks
and balances, it would add triples forever!

The advent of DL-safe rules solves some of the problems regarding unde-
cidability. DL-safe rules are those rules that bind only known instances in
your knowledge base or ontology to rule variables. If there isn’t instance data
that specifically matches your query, then a DL-safe rule will not execute
its consequent, even if the rule is perfectly valid. In the previous example,
DL-safe rules are not applicable since friendCount is a datatype property and
DL-safe rules apply to instances. Yet, this scenario doesn’t discount their util-
ity. The applicability of these rules can be confusing, so let’s take a look at an
example.

Using Protégé, the FOAF ontology is extended by creating a new ontology
and adding the following concepts:
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Create class Friend that is a subclass of FOAF Person (see Figure 7-1).

Create object property isBestFriendOf without any restrictions (see
Figure 7-2).

Create class PopularFriend that is not only a subclass of Friend
but also has a restriction that any instance of PopularFriend
must be the best friend of at least one friend (see Figure 7-3).

Create an instance of Friend with a resource ID of John (see Figure 7-4).

Create an instance of PopularFriend with a resource ID of
QuarterbackAndrew (see Figure 7-5).

Figure 7-1 Creating the Friend class

At this point, we can turn on the reasoner. We are using Pellet, a popular
open-source reasoner that supports decidable reasoning over OWL and is
already integrated into Protégé. Choose Pellet 1.5 from the Reasoner menu
item (see Figure 7-6) and then select the Inferred Axiom subtab in the Active
Ontology tab to see what new information Pellet was able to infer (see
Figure 7-7).
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Figure 7-2 Creating the isBestFriendOf object property

Figure 7-3 Creating the PopularFriend class
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Figure 7-4 Creating John, a Friend instance

Figure 7-5 Creating QuarterbackAndrew, an instance of PopularFriend



Chapter 7 ■ Adding Rules 249

Figure 7-6 Enabling the Pellet reasoner

Figure 7-7 Viewing the inferred statements

The five inferred statements that are shown in Figure 7-7 are basic sub-
class/superclass inferred statements. We’re missing one final part to our
ontology: a rule that states that any Person that is the best friend of another
Person belongs to a class of individuals PotentialClassKing. The rule, labeled
IsAPotentialClassKing, is shown here in RDF/XML syntax. Note the explicit
declaration of variables outside the swrl:Imp element:

highSchool:f1

rdf:type swrl:Variable .

highSchool:f2

rdf:type swrl:Variable .

highSchool:IsAPotentialClassKing

rdf:type swrl:Imp ;
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swrl:body (

[ rdf:type swrl:ClassAtom ;

swrl:argument1 highSchool:f1 ;

swrl:classPredicate foaf:Person

]

[ rdf:type swrl:ClassAtom ;

swrl:argument1 highSchool:f2 ;

swrl:classPredicate foaf:Person

]

[ rdf:type swrl:IndividualPropertyAtom ;

swrl:argument1 highSchool:f1 ;

swrl:argument2 highSchool:f2 ;

swrl:propertyPredicate

highSchool:isBestFriendOf

]) ;

swrl:head (

[ rdf:type swrl:ClassAtom ;

swrl:argument1 highSchool:f1 ;

swrl:classPredicate

highSchool:PotentialClassKing

]) .

Protégé 4 includes a minimal SWRL editor. It can read SWRL rules and
allow SWRL-enabled reasoners, like Pellet, to reason over them. If adding this
rule to the ontology via some type of text editor doesn’t appeal to you (don’t
worry, you’re hardly alone), then you may want to use the latest version of
Protégé 3 (such as 3.4). There is an optional tab in Protégé 3 called SWRLTab
that allows rules to be displayed in the abstract syntax.

After adding this rule to our OWL file and rerunning the Pellet reasoner
over the ontology, we should expect to see that QuarterbackAndrew is
an instance of PotentialClassKing, but Protégé/Pellet doesn’t infer it! If
QuarterbackAndrew is an instance of PopularFriend, at some point he has to be
someone’s best friend; that’s clearly required if something is a PopularFriend

(this is due to the owl:someValuesFrom restriction). Add this to the fact that
QuarterbackAndrew is an instance of Friend, and our statements satisfy the
statements in the body of the rule.

A reasoner that didn’t restrict itself to DL-safe rules would agree with
all of the above and would infer that QuarterbackAndrew is an instance
of PotentialClassKing. Inferring information without all the information
present (that is, we don’t know yet who will have QuarterbackAndrew as a best
friend) can lead to undecidability. In this particular case, our rule is decidable
with the limited data set we used, but a DL-safe rule engine can’t know this
ahead of time in every circumstance. It can guarantee decidability only by
requiring all necessary data to be present at the time the rule is fired.

If we add a statement that clearly states that QuarterbackAndrew is
the best friend of John (see Figure 7-8), Pellet is able to now infer that
QuarterbackAndrew is, indeed, a PotentialClassKing instance (see Figure 7-9).
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TIPS ON RULE DEVELOPMENT

The suggestions noted here come from both the SWRL submission as well as
our own experience when writing SWRL rules.

◆ Use named classes. When using the classAtom element, using
previously defined classes (either externally or in the same file) can
assist rule-translation tools while enhancing readability and class
reusability. Some SWRL implementations support only named classes.

◆ Tighten your typing. By declaring all the pertinent classes that a given vari-
able belongs to (assuming the variable represents an individual), rule exe-
cution may slow down as a result and reduce the rule engine’s ability to
take advantage of inference. Plus, maintenance can become an issue. Thus,
if you know that ?x is an Animal, Person, and Father and there is a pro-
gressive subclass relationship among all three classes, you should limit any
type atoms to just the most specific subclasses, in this case Father.

◆ Limit generalized rules. As a rule of thumb, the more variables that are
present in a rule’s antecedent, the more time reasoners require in evaluat-
ing these atoms.

Figure 7-8 Making QuarterbackAndrew one of John’s best friends
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Figure 7-9 QuarterbackAndrew is now an instance of PotentialClassKing

Ontological Mediation
Some of the advantages of the Semantic Web discussed in this book include
reusability, flexibility (for example, ontologists are free to define their own
vocabularies, even for identical concepts across data sources), and the support
of distributed knowledge (that is, no requirement of a single, one-size-fits-all
knowledge representation controlled by some subset of the community).
Ontological mediation is the idea that while the Semantic Web gives users these
freedoms, there will most definitely be a need to integrate RDF data across
these systems at various levels.

Semantic Web rule languages, such as SWRL, not only permit complex
data integration but also naturally allow those rules to be explicitly declared
in the data instead of burying them in code or database triggers or else-
where. In this section, we’ll explore Snoggle (http://snoggle.projects
.semwebcentral.org), an open-source ontology-mapping tool that creates
SWRL rules graphically, enabling data using one ontology to be translated
into another ontology.
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We won’t detail the installation of Snoggle 1.1 since it uses a straightforward,
self-installing .jar file (based on the open-source Ant Installer) that includes
a wizard to assist in the process. Snoggle can be installed with or without Jena
2.4 as part of the download. You can use the Jena 2.5.6 libraries discussed in
Chapter 2 if you feel comfortable setting up your classpath with all the proper
links. Otherwise, feel free to download the Snoggle package with Jena so
you will not have to worry about any runtime configurations. In addition, if you
haven’t installed the 1.6 version of the JDK yet, you must do this step first
because Snoggle needs it for the required tools.jar archive file.

Our discussion here will not cover all of the functionality of Snoggle. If
you’d like to learn more about Snoggle, it comes with a tutorial project (loaded
by selecting the Help � Load Tutorial Project menu item), which covers the
tool in more depth.

Mapping Friends without Upsetting Any of Them

Let’s look at an example of how to use Snoggle. Pretend we have a situation
where we’ve been using a freely available ontology about people, and we’ve
created a lot of instance data based on this ontology. But now we want to create
a mapping to FOAF for the sake of compatibility. We’ll start by launching
Snoggle:

java –jar snoggle.jar

You should notice a GUI appear, as shown in Figure 7-10. Snoggle
models mapping from a ‘‘from’’, or source, ontology to a ‘‘to’’, or des-
tination, ontology and requires at least one ontology of each type to be
identified before any rules can be created. The freely available people ontol-
ogy (http://owl.man.ac.uk/2005/07/sssw/people), represented here with
namespace ns0, is loaded from Ontology � From Ontology � Load Ontology.
Next, load the FOAF RDF file (http://xmlns.com/foaf/spec/index.rdf) as
the destination ontology via the Ontology � To Ontology � Load Ontology
menu option. Snoggle should then look similar to Figure 7-11. Snoggle does not
limit the loading of a single source or destination ontology; continued Load
Ontology menu operations would simply add additional ontologies into the
tool. This is particularly helpful when creating mapping rules that have the
same source and destination ontology.

At this point, we can begin to create our mappings. Starting with a simple
case of mapping across classes, let’s state that anyone who is an ns0:person (a
concept from our source ontology) is also a foaf:Person (from our destination
ontology). More precisely, if any resource is an instance of ns0:person, that
resource will also be an instance of foaf:Person. Drag the ns0:person list item
from the upper-right From Ontology list box and drop it in the center canvas.
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When you drag the item over the canvas, Snoggle will ask if you want the
element in the head (represented by the color blue) or the body (represented
by the color green) of a rule. Drop it in the body. Next, drag the foaf:Person

list item from the To Ontology list box to the canvas, and select it for inclusion
in the head. At this point, our ns0:person is a green gradient rectangle in the
center canvas, and the foaf:Person is a blue gradient rectangle. You can move
the shapes around in any arrangement you like. The final step involves clicking
and dragging the small square at the center of the ns0:person element to the
center of the foaf:Person element. An arrow connecting the two rectangles
appears and completes the rule, as shown in Figure 7-12.

Figure 7-10 The initial Snoggle screen

Repeat these steps for as many rules as you need (several more examples
are outlined), but the process isn’t completed until it is serialized in a SWRL
concrete format. Snoggle supports both XML and RDF serializations, which
can be created by choosing File � Export. SWRL files in XML are saved with
the .swrlx extension, whereas SWRL files in RDF use the .swrl file extension.
You should notice a message in the bottom panel of Snoggle (the logging
window) that states that the resulting SWRL data passed validation as part
of exporting. Snoggle also supports project files for storing metadata such as
window layouts, input ontologies, and the ordering of rules as well as the
rules themselves.
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Figure 7-11 Snoggle loaded with the minimal number of ontologies

Figure 7-12 A simple class-mapping rule. In the center panel, the person rectangle
is green, representing a rule body, while the http://xmlns.com/foaf/0.1/Person

rectangle is blue, representing the rule head.
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The Power of Rules

In the next example, we look at a more complicated rule. As shown in Figure
7-13, if there is an instance of ns0:elderly that has a pet identified by the
ns0:has pet property and stored in var1, then that elderly person is also of
type foaf:Person, has a foaf:interest based on var1, and has earned the
foaf:nick[name] property of ‘‘Crazy Pet Lady.’’ Note that variable name of
var1 is hardly descriptive, but it is Snoggle’s default naming scheme. These
default names can easily be overridden by selecting the variable’s shape in
the center canvas and then entering a new variable name in the Node panel
in the upper left.

Elderly

String Concatenati...

String Concatenati...

var 4

var 1

var 1

Female

http://xmins.com/foaf/0.1/person
http://xmins.com/foaf/0.1/interest

http://xmins.com/foaf/0.1/nick

Lady
Pet

Crazy

has_pet

Strin
g

Strin
g String

Output String

Output String–String

http://xmins.com/foaf/0.1/gender

Figure 7-13 Snoggle example that includes built-ins, intra-rule variable sharing, and literal
assignments
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We could have gone a step further in this example and used the rdfs:label

value of any of var1’s types as part of the nickname, resulting in strings like
‘‘Crazy Duck Lady’’ or ‘‘Crazy Cat Lady.’’

If you were to view the large amount of XML resulting from the serialization
of this example (over 100 lines worth of RDF when viewed with carriage
returns!), tools such as these make a great deal of difference toward rule
generation, maintenance, validation, and adoption. They are a very important
part of the adoption of the Semantic Web by a wider audience of developers.

These examples only scratch the surface of Snoggle’s capability, but they
should be enough to get you going on your own creation of mapping rules.

Jena Rules

Jena, the Semantic Web Framework, also supports rules, called Jena rules. The
Hello Semantic Web World Tour in Chapter 2 touched on these rules to identify
Gmail.com email friends. The Jena rule stated that if an email address contains
the string gmail.com, then create a new statement that includes the owner
of the email address in the people:GmailPerson class. As stated previously,
rules add expressivity through various if-then constructs that may also include
built-in functions. Jena, similar to SWRL, contains its own syntax to construct
a rule and a set of built-in methods that can be used in rules.

Jena rules are bound to a rule reasoner. A rule reasoner is bound to a model
or schema, as with any Jena reasoner, with the call to bindSchema(schema).
Once bound to a model, the rule fires in accordance to its configuration. A
reasoner, including a rule reasoner, may fire in a forward-chaining mode,
backward-chaining mode, or a hybrid of both. Forward rules fire whenever
a new rule is added to the rule reasoner or new statements are added to
the associated model. Backward rules fire whenever a query is executed on the
associated model. A rule may add new statements to the model and new rules
to the rule reasoner. Thus a rule may create another rule and so on. Rules fire
until no matched bodies remain; however, there is no assurance that rules fire in
a given order.

A Jena rule contains a list of body terms or premises (the if clause) and a list
of head terms or conclusions (the then clause). Each rule can optionally have a
name for convenience and a direction for hybrid rules. The rules are specified
in a Jena-specific format suitable for use in a text file. This text rule example is
taken from Chapter 2:

emailChange: (?person foaf:mbox ?email),

strConcat(?email, ?lit), regex( ?lit, '(.*@gmail.com)’)

→ (?person rdf:type people:GmailPerson>)]
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The rule is named emailChange. Rule names are optional. This rule contains
three body terms separated by commas. Variables are preceded by question
marks, similar to SPARQL and SWRL. The first term in the body matches
statements that contain a foaf:mbox property. The second term contains a
built-in rule function, strConcat(), to make the email variable into a literal
term. The third term matches the regular expression pattern @gmail.com

through a call to another built-in function, regex(). If all three terms are true,
the head term is added to the model associated with the rule reasoner. Just
like SWRL’s human-readable syntax, the arrow (→) separates the body terms
from the head terms. In this case, the forward direction of the rule indicates
a forward rule that fires on rule addition and new statement addition. If
the arrow is reversed, the rule is a backward rule that fires during query
expansion. In backward chaining, the system looks for a match on the head
term and then expands the model or query in accordance with the body terms.
The head term consists of a statement that declares the resource associated
with the email address is of type people:GmailPerson.

In addition to the rule we just discussed, the rule text file can also contain
the following:

Comment lines: # or //

Prefixes: @prefix pre: <URI>

Other rule files: @include <URI>

Jena supports several built-in methods that cover the following categories:

Test for type of object

Equality

Math

String concatenation

String search

Time

Print

List manipulation

As an alternative to SWRL, Jena rules provide a basic rule syntax to expand
the expressiveness of an ontology. It allows the flexibility of backward or
forward chaining as well as combining the two. In addition, the rule terms
may contain built-in methods to perform various calculations and string
manipulations.
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Rule Interchange Format

Currently there is no standard rule language for the Semantic Web. To date, a
wide variety of rule languages and engines, such as F-Logic, Prolog, and Jess,
have already been used with the Semantic Web in one way or another. It is
highly unlikely that there will ever be a single rule language for the Semantic
Web. First, it is very difficult to support all the needs of the entire community.
Second, working implementations, such as Jess, are satisfactory in many cases
and shouldn’t be excluded or ignored by the community for lack of following
a specific standard. Third, research and development in the areas of rules and
rule-based systems is far from complete.

The W3C initiated the RIF Working Group in 2005. Its goals are both
ambitious and difficult:

To enable and promote rule interoperability across existing systems

To support interoperability and extensibility for future systems

To create and support normative serializations based on XML

These are only the highest-level goals. For a more detailed list, see
http://www.w3.org/TR/rif-ucr/#Goals.

None of the work produced by the RIF Working Group has yet been accepted
as final recommendations by the W3C, and implementations have just begun
to emerge. Next we’ll focus on introducing the Working Group’s effort so far
and the documents that are currently available.

Delving into the Details
At the time of this writing, the Working Group has produced seven documents
of particular interest.

RIF Basic Logic Dialect (BLD), located at http://www.w3.org/TR/2008
/WD-rif-bld-20080730/

RIF Production Rule Dialect (PRD), located at http://www.w3.org/TR
/2008/WD-rif-prd-20081218/

RIF Core, located at http://www.w3.org/TR/2008/WD-rif-core-
20081218/

RIF Framework for Logic Dialects (FLD), located at http://www.w3.org
/TR/2008/WD-rif-fld-20080730/

RIF Datatypes and Built-Ins 1.0 (DTB), located at http://www.w3.org/TR
/2008/WD-rif-dtb-20081218/
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RIF RDF and OWL Compatibility (RDF+OWL), located at http://www
.w3.org/TR/2008/WD-rif-rdf-owl-20080730/

RIF Use Cases and Requirements (UCR), located at http://www.w3.org
/TR/2008/WD-rif-ucr-20081218/

The term dialect refers to an XML-based rule language with well-defined
semantics. In general, intra-dialect compatibility isn’t a requirement, but
overlap and compatibility between dialects is a desirable goal. Thus, as new
rule languages are defined, additional dialects may be needed to support
translation to and from other dialects.

The first two dialects, BLD and PRD, are the main dialects being currently
defined by the Working Group. BLD concentrates on logic programming
models, mainly those defined around Horn rules (much like we’ve seen with
SWRL), and can be seen in architectures such as deductive databases. BLD is
the basis for interoperability with RDF and OWL. PRD, on the other hand,
is focused on the condition-response frameworks. Given a condition that is
found to be true, the rule should elicit a response. The PRD allows for actionable
responses: updating a KB, emailing an administrator, or creating a log file,
for example. BLD systems can have only logic statements in their conclusions
(that is, then statements). The intersection of BLD and PRD includes what
is known as the RIF Core, which is envisioned as being shared by all dialects,
including those not yet defined.

FLD serves as the foundational framework for logical RIF dialects; its main
audience is dialect creators versus the typical developer user. DTB details
the datatype primitives and built-in functions and predicates supported by
RIF. DTB covers the usual XML Schema datatypes and is heavily based
on XPath and XQuery functions: type conversions, mathematical operations
and comparisons, and string transformations. There are still shortcomings in
the DTB, such as supporting comparison functions for all datatypes, but the
version at the time of this writing is still an initial draft. RDF+OWL elaborates
on RIF’s BLD interoperability specifically with RDF data and RDFS as well
as OWL. UCR outlines the requirements and several high-level common use
cases demonstrating the need for rule interoperability.

The Future of RIF

The RIF Working Group’ charter, originally set to expire in 2007, has been
extended, and the Working Group continues to make progress toward pro-
ducing W3C Recommendations. Tools supporting BLD and PRD should be
available in the short term as at least two implementations are usually required
before W3C specifications can progress beyond Candidate Recommendation
status.
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Summary

Rules are a big subject to cover, and we’ve tried to give you not only a
working definition of what rules are but also examples of the various syntaxes
to familiarize yourself with Semantic Web rules. You should have enough
familiarity with SWRL and Jena to begin to experiment by adding rules
to your ontologies and discovering how they affect your knowledge bases.
Finally, we covered RIF, which is W3C’s emerging work on rules. You’ve
examined one of the final building blocks of the Semantic Web—good luck!
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III
Building Semantic Web

Applications

This section deals with the second major aspect; inte-
grating the knowledgebase with an application that
acts upon it. Most Semantic Web applications are built
using the same fundamental principles, similar com-
ponents, and variations of a basic architecture. This
section builds on the foundation established so far by
using the components and technologies already pre-
sented to perform tasks that are common to Semantic
Web applications like integrating a knowledge model
into an application, exposing data as RDF, integrating
the disparate knowledge models, and sharing semantic
information with the world. Each chapter explores one
of these common tasks, providing numerous examples
along the way. Additionally, each chapter in this
section incrementally develops a large scale Seman-
tic Web reference application called the FriendTracker
to clearly illustrate the programming aspects.

Chapter 8 takes the first step towards building a
Semantic Web application by presenting the integra-
tion and interactions of a Semantic Web framework
and traditional applications. The chapter provides an
extensive look at the complete life cycle of a Seman-
tic Web application. Next, it presents the common
frameworks and provides a complete overview of the
Jena Semantic Web framework using programming
examples. Finally, the chapter presents many com-
mon programming challenges and solutions such as
customization and configuration, status reporting, and
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concurrency as they manifest in Semantic Web applications. The chapter ends
by outlining the FriendTracker application, which the next three chapters
build.

Chapter 9 presents the task of integrating data from various formats and
representations into a RDF data model. The data sources illustrated include
RESTful XML Web services, relational databases, and plain old java objects
(POJOs). The Semantic Web forms a meta layer that avoids coping the infor-
mation but rather provides a semantic path to the data in its native format
and location. Numerous programming examples illustrate the various ways
that existing technologies and data source integrate into a knowledge model.
Throughout the chapter, many common issues related to data exposure and
integration are discussed and potential solutions are introduced.
The chapter integrates the data sources of the FriendTracker application.

Chapter 10 tackles the issue of aligning and unifying disparate knowledge
models. Whereas chapter 9 is concerned with pulling data from diverse
formats and representations into a common data model, Chapter 10 pulls
together the information into a single unified knowledge model. Alignment
forms common concepts and relationships across the various data sources.
Many approaches to unifying knowledge models are presented including
using SWRL rules to map between them, OWL ontology constructs to draw
relationships between classes, properties, and individuals, and direct RDF
manipulation with software to work the data into a unified knowledge model.
This chapter explains the FriendTracker application and ontologies and uses
programming examples to illustrate how data from each of the data sources is
made available to the application.

Chapter 11 completes the loop by taking the FriendTracker knowledge
model and exposing it to the outside world. Many methods of exposure
are discussed into the use of embeddable formats like RDFa, Microformats,
and eRDF. Other more direct ways of exposing information are explored,
including the establishment of a SPARQL endpoint. The chapter concludes
with an example of exposing the data contained in FriendTracker in an XHTML
document using RDFa.
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8
Applying a Programming

Framework
‘‘It is the framework which changes with each new technology and not just the

picture within the frame.’’

—Marshall McLuhan, Canadian communications theorist, educator,
writer, and social reformer, 1911–1980

The previous chapters provided solid exposure to forming a Semantic Web
of data with ontologies, rules, and such. This section presents a formal and
comprehensive treatment of a Semantic Web programming framework. A
framework organizes programming methods to use the rich data in the
Semantic Web effectively. A framework makes the processing of the Semantic
Web data come alive with all of its possibilities. The upcoming chapters
apply the framework to rich domains that ingest, align, and output Semantic
Web information. Operations are illustrated through the construction of the
multichapter FriendTracker application. This chapter prepares for that deeper
exposure by focusing specifically on the framework. Here you learn about
the framework’s purpose and operations in detail. Extensive coding examples
are included, which are based on the Jena Semantic Web Framework. This
chapter allows you to focus on the framework operations themselves without
the complexity of domain applications.

In this chapter, you also learn about:

Key concepts in a Semantic Web framework

Available Semantic Web frameworks

Concepts through code examples using the Jena Semantic Web
Framework

265
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Solutions to various programming challenges using a Semantic Web
framework, such as customization, status, multithreading, and multiuser
interactions

Framing the Semantic Web

The Semantic Web is all about data, useful semantic data. In order to do
something with that data, you need processing. You could directly employ
your brain to such a processing task, but that misses the point of the Semantic
Web’s machine readability. This readability requires a machine, actually an
application, properly programmed to interact with the formal constructs of
the Semantic Web.

Semantic Web processing comprises several key areas:

Referencing and managing accessible storage

Populating or linking Semantic Web data to the referenced storage

Interrogating the Semantic Web data via navigation, search, and queries

Reasoning via logic and rules across the Semantic Web data

Adapting the framework to allow substitutions and customiza-
tion for optimum results in a specific application domain

In addition, the processing manages the data and various use scenarios. For
example:

Obtaining information regarding the application’s Semantic Web data
such as its size and capabilities

Event-based programming dealing with key changes within the Seman-
tic Web data

Resource management such as networking, database, and file system
interactions to access and store local and remote Semantic Web data

Handling concurrent threads and multiple user access

You would also want the framework to offer consistent processing methods
and concepts to simplify writing and debugging your code. Consistency
requires common semantics and syntax across processing methods, attributes,
and parameters. Effective Semantic Web frameworks do all this and more by
offering a consistent and complete programming environment for the Semantic
Web.

Programming languages employed by the frameworks, however, are not
written in OWL (at least not yet), nor are any major languages specifically
designed for the Semantic Web. Programming languages have their own
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perspective and capabilities. This requires a translation between Semantic
Web data constructs and Semantic Web processing frameworks. Typically,
Semantic Web frameworks focus on object-oriented behaviors. The frame-
works translate Semantic Web statements, classes, and such data items into
programming-related classes, objects, methods, and attributes of the given
programming language. The two are not completely orthogonal, but there are
significant differences because they have different goals: Semantic Web knows
(semantic data); frameworks do (programming instructions). In a sense, the
Semantic Web is the brain, whereas frameworks offer a useful programming
body to apply the Semantic Web’s data.

There are several excellent programming frameworks that exploit the poten-
tial of the Semantic Web, as noted in Chapter 5, ‘‘Modeling Knowledge in
the Real World.’’ Table 8-1 outlines the key characteristics and other reference
material. The table notes the programming method and its semantic expres-
sivity across the various Semantic Web language standards. This continues the
discussion started in Chapter 5.

Table 8-1 Semantic Web Framework Summary

FRAMEWORK LANGUAGE/INTERFACE SEMANTIC LEVEL

Jena Java RDF to OWL 2

Sesame Java & RESTful web service RDF

OWL API Java OWL 2

RAP—RDF API PHP RDF

Redland C, Python, Ruby, Perl, & PHP RDF

LinqToRDF .NET RDF

Figure 8-1 illustrates our path in exploring and detailing a Semantic Web
framework.

The illustrated path contains two main portions: Semantic Web data devel-
opment and Semantic Web data management. Semantic Web development
deals directly with data manipulation. Semantic Web data management deals
with the administration of the Semantic Web data and its associated processing.
We add details to the illustration.

The Semantic Web data development life cycle follows these steps:

1. Storage—The framework must acquire or reference existing
space, typically in memory or a database, to store Semantic
Web data. Note that your application can have multiple storage
locations for performance and programmatic reasons.
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Semantic WebSemantic Web
Management
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Figure 8-1 Framework path

2. Population—The framework populates the referenced storage with
Semantic Web data retrieved from files, network locations, databases,
and/or constructed directly.

3. Combinations—The framework combines your referenced Semantic
Web data from multiple places to create additions, unions, differences,
and intersections as well as test for equality between the referenced
locations.

4. Reasoning—The framework allows internal and external rea-
soning of the Semantic Web to produce additional information
based on inference. The additional information could add new
statements and also indicate issues with existing statements.

5. Interrogation—The framework investigates the Semantic Web data
through searching, navigation, and queries. Searching uses simple
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matching. Navigation follows the path created by the various property
relationships, and queries employ a formal query language.

6. Export—The framework provides methods to export the Semantic Web
data in various standard formats.

7. Deallocation/close—The framework clears out the referenced
storage and frees any allocated computing resources.

Semantic Web management provides:

Information—The framework provides its size, capabil-
ities, and characteristics of the Semantic Web data.

Events—The framework indicates the occurrence of various events such
as adding statements to the data to enable event-driven programming.

Concurrency—The framework manages multiple threads and
users manipulating the same Semantic Web data concurrently.

Customization—The framework allows custom substitutes for special-
ized use such as the modification of the data storage mechanism.

Because this is a programming book and not a survey book, we dive into
one of the frameworks with code examples to illustrate its programming
capabilities. We selected the Jena Semantic Web Framework because it strikes
a useful balance between the various Semantic Web languages, offers excellent
flexibility, and is open source. We examine code examples for each of the
previously mentioned operations.

The Jena Semantic Web Framework

We start our exploration with an examination of Jena’s programming
abstractions. Jena is implemented in the Java programming language.
These Java-based abstractions translate the statements and constructs of the
Semantic Web into useful programming artifacts such as Java classes, objects,
methods, and attributes. Next we acquire and initialize the Jena Framework
with additional details beyond the discussion in Chapter 2. Finally, we detail
the major framework operations in accordance with the outlined framework
exploration path. This provides you with the programming building blocks
for the Semantic Web applications in the upcoming chapters.

Defining Jena Programming Concepts
The Jena Semantic Web Framework maintains a consistent treatment of the
Semantic Web through its use of Java classes and variables. Table 8-2 illustrates
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the major Java classes and interfaces and connects them to their corresponding
Semantic Web artifact. Note that the Semantic Web artifacts are data represen-
tations, whereas the Jena artifacts are object-oriented Java classes containing
both data representations and corresponding methods. As you can see, they
track very closely with one another.

Table 8-2 Semantic Web and Jena Framework Comparison

ARTIFACT SEMANTIC WEB JENA JAVA CLASS NOTES

Subject, predicate,
object

URI Resource, Property A resource can be a
subject, object, or
predicate.

Statement Statement Statement Special consideration
for reified statements.

Data Ontology and
instance data

Graph and Model Graphs are a basic
building block for
models. They both
may contain ontology
and instance data.

Query and results SPARQL and
Semantic Web
data

Query and
ResultSet

Analogous to
relational databases.

Reasoner Reasoner Reasoner Allow multiple
internal and external
reasoners.

Rules SWRL Reasoner Rule support
determined by
specific reasoner.

Event notification Not applicable ObjectListener Enable event-driven
processing.

The Jena Framework employs the following major Java classes (upcoming
code examples cover each one in more detail):

Resource—A class representing an element contained within a
statement such as a subject, predicate, or object. This is analogous
to an RDF resource. There also exists a Jena resource referred to
as a reified statement that considers a triple a single resource.

Statement—A Semantic Web triple containing a subject, predicate, and
object. The Statement class allows simple interrogation of its containing
components. A special statement called a reified statement contains a



Chapter 8 ■ Applying a Programming Framework 271

statement about a statement. A reified statement is an extension of a
regular statement in which it is both a statement and a resource. This is
a convenience that Jena provides to encapsulate the abstract concept of
reification.

Graph—Basic method for maintaining Semantic Web data. A graph
allows basic add, delete, find, and contain operations. Typically, an
application does not deal directly with a Graph object. The Graph
interface allows the instantiation of different types of storage mech-
anisms. This provides low-level flexibility regarding Semantic Web
storage.

Model—A model builds on the basic graph to offer rich interactions
with Semantic Web data. Your applications read, write, reason, and
query Semantic Web data through access to the Jena model. The
model forms the actual knowledgebase. There exist several types of
model classes based on the application’s needs for expressivity and
reasoning. These classes include Model for basic RDF and OntModel

for OWL. Your application can maintain many models concurrently
for various reasons, such as performance, cache, and so on.

Query and ResultSet—The query employs SPARQL with results
returned as ResultSet. Your application iterates through the
ResultSet matching on the variables used in the query.

Reasoner—Contains the reasoner processing via either internal
or external reasoning. Internal refers to the framework’s capabil-
ities itself, whereas external enables third-party reasoners access
to the knowledgebase. A third-party reasoner can be either local
using Java calls or remote using DIG calls. Your application binds
a specific reasoner to a specific Jena model. Your application
can have multiple reasoners acting upon multiple models.

In addition to offering classes for typical Semantic Web constructs, Jena
offers classes to convert ontologies to Java classes. Jena offers a Java class,
schemagen (yes, that is lowercase), to generate a Java class description of a
Semantic Web ontology or schema. This does not convert the instance data into
Semantic Web data, only the ontology statements. It is limited to the ontology
or schema constructs. The schemagen Jena class constructs a Java class for each
of the Semantic Web classes, allowing your application programmatic access
to its underlying components.

Typically, schemagen is called directly from a command window or via an
Ant script, a Java-based automated code-building tool. You need only provide
a few options and the location of the ontology via a file or URL. As an example
we use schemagen to generate a Java class from the FOAF ontology. Here is
the command-line call.
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java -classpath "./jena.jar:

./commons-logging-1.1.1.jar:./xercesImpl.jar:

./xml-apis.jar:./log4j-1.2.12.jar:

./iri.jar:./icu4j 3 4.jar"

jena.schemagen -i foaf.rdf --package

"net.semwebprogramming.chapter10.JenaExploration"

-o Foafowl.java –ontology

The command-line call includes the necessary classpath .jar files as well as
several key schemagen options:

-i—Provides the input location of the ontology. This can be either a
local file or a remote URL. Here we have a local file, foaf.rdf.

--package—Provides the package name for the created Java class.

-o—Provides the name of the output file to contain the Java class.

--ontology—The class uses OWL constructs as opposed to the default
RDF constructs.

Running this command produces a single Java class titled Foafowl in
accordance with the –o option. (Note that FOAF has only one main class.)
In order to follow the proper naming convention, capitalize the output file
(schemagen capitalizes the class name as the accepted Java convention). The
following output shows a subset of the class. We need not include the entire
file—you get the idea.

package net.semwebprogramming.chapter10.JenaExploration;

import com.hp.hpl.jena.rdf.model.*;

import com.hp.hpl.jena.ontology.*;

/**

* Vocabulary definitions from foaf.rdf

* @author Auto-generated by schemagen on 27 Sep 2008 14:42

*/

public class FoafOwl {

/** <p>The ontology model that holds the vocabulary terms</p> */

private static OntModel m model =

ModelFactory.createOntologyModel( OntModelSpec.OWL MEM, null );

/** <p>The namespace of the vocabulary as a string</p> */

public static final String NS = "http://xmlns.com/foaf/0.1/";

/** <p>The namespace of the vocabulary as a string</p>

* @see #NS */

public static String getURI() {return NS;}

/** <p>The namespace of the vocabulary as a resource</p> */

public static final Resource NAMESPACE = m model.createResource( NS );

/** <p>Indicateshomepagethe service provide for this account.</p> */

public static final ObjectProperty accountServiceHomepage =

m model.createObjectProperty

("http://xmlns.com/foaf/0.1/accountServiceHomepage" );
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/** <p>A location that somethingnear, for some broadly human notion of

* near.</p>

*/

public static final ObjectProperty based near =

m model.createObjectProperty

( "http://xmlns.com/foaf/0.1/based near" );

/** <p>A current project this person works on.</p> */

public static final ObjectProperty currentProject =

m model.createObjectProperty

("http://xmlns.com/foaf/0.1/currentProject" );

/** <p>A depiction of some thing.</p> */

public static final ObjectProperty depiction =

m model.createObjectProperty

( "http://xmlns.com/foaf/0.1/depiction" );

/** <p>A thing depicted in this representation.</p> */

public static final ObjectProperty depicts =

m model.createObjectProperty( "http://xmlns.com/foaf/0.1/depicts" );

/** <p>An organization funding a project or person.</p> */

public static final ObjectProperty fundedBy =

m model.createObjectProperty

( "http://xmlns.com/foaf/0.1/fundedBy" );

/** <p>Indicates an account held by this agent.</p> */

public static final ObjectProperty holdsAccount =

m model.createObjectProperty

("http://xmlns.com/foaf/0.1/holdsAccount" );

The class produces a static instance of the ontology. Note the call that creates
the Model object and each resource. You could use this object to refer directly
to the various resources and related data through the generated method calls.
For example, Foaf.getURI() returns the URI of the FOAF ontology. This
approach provides an easy way to reach into the ontology via Java class
methods rather than dealing indirectly via the various calls that instantiate the
ontology method and attribute.

Now that we covered the concepts, we will put them to work.

Programming with Jena

We explore the Jena Framework by following the path previously outlined
in Figure 8-1: Semantic Web data development and Semantic Web data
management. This provides a systematic way to explore the framework with
coding details for each area.

This section focuses on the construction of applications using the Jena
Framework. We do not focus on complex application domains so as to reveal
clearly Jena functionality. Future chapters apply these Jena code methods and
constructs to various application domains.
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In order to have complete working examples, we start by outlining the
framework through high-level method calls. Don’t let this scare you. We break
down each method along the way. The following methods outline the path we
take through the Jena Framework. We follow it directly, except we save the
noted management methods for last (// Part of Management).

public class JenaExploration {

final private String defaultNameSpace =

"http://semwebprogramming.org/2009/ont/chp8#";

private OntModel modelMem = null, modelDB = null;

private InfModel jenaInferModel = null, jenaRuleModel = null,

pelletInferModel = null, digInferModel = null;

private JenaListener listenerMem = null, listenerDB = null;

public static void main(String[] args) {

try {

JenaExploration jena = new JenaExploration();

// Initial Creation

jena.aquireMemoryForData();

jena.aquireDBForData();

// Bulk Populate

jena.addDataFromFile();

jena.addDataFromURL();

// Monitor Events

jena.setEventListener(); // Part of Management

// Populate with Statements

jena.addDataFromStatements();

jena.addDatafromOntology();

jena.addLiterals();

jena.addReifiedStatements();

// Get Status

jena.getModelInfo(); // Part of Management

// Combinations

jena.combineData();

// Interrogation

jena.searchAndNavigateData();

jena.queryData();

// Reason
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jena.reasonOverData();

// Validate

jena.validateData();

// Critical region

jena.criticalRegionWrite(); // Part of Management

// Export the Model

jena.writeData();

// Create a Custom Graph for the Model

jena.createCustomModel(); // Part of Management

// Clear and Close

jena.clearAndCloseData();

}

catch (Exception e) {

System.out.println("Failure: " +

e.getClass().getName() + "—" + e.getMessage());

e.printStackTrace();

return;

}

}

We create a new Java class, JenaExploration. The name purposely hints at
the class’s perspective to show the raw Jena code rather than contribute to a
complex Semantic Web application. The comments outline the programming
flow from forming Semantic Web storage to closing it. Next we go through
each one. You can download this working example. One note before we dive
into each method: The code declares global variables that set the namespace
and the variables for the various models. We refer to a Model object simply
as model in lowercase. We follow this convention for other Jena objects as
well.

Also, we need to say a few words regarding Java exceptions. It is not the
intention of this Jena code exploration to demonstrate a production application,
but that does not give us a complete escape from exceptions. As a compromise,
we handle exceptions within the main() method. As you shall see, several
Jena methods (and other related methods) may throw an exception. We isolate
the exception-handling code to here and meekly acknowledge its presence.
As we explore the code, we note where exceptions are thrown. This reminds
us of the importance of handling exceptions without complicating the Jena
examples. Each method notes the exception types it throws in the method
declaration. We won’t dwell on them, but they are included in the code
examples.
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Establishing the Jena Development Environment
Hopefully you downloaded the framework according to the instructions in
Chapter 2, ‘‘Hello Semantic Web World.’’ This section supplies some additional
details regarding your Jena environment. For the following references, we refer
to your Jena installation directory as JenaInstallDirectory.

The Jena download (found at http://jena.sourceforge.net/downloads

.html) contains a wealth of valuable information beyond the necessary Jena

.jar files. It contains dozens of examples, major ontologies, an FAQ section,
and extensive documentation including the Jena Javadocs. Links to all of this
content is found by loading the JenaInstallDirectory/readme.html file into
your browser. The download also includes a test script to exercise the many
Jena functions. You can run the self-check test, and you are all set.

The only essential item from the download is the various Jena .jar

files that contain the framework itself. These are found in the JenaInstall

Directory/lib directory. You need to include these .jar files in your Java
classpath when accessing the Jena Semantic Web Framework.

Establishing the Knowledgebase: Setting Up the Model
The first step in processing Semantic Web data is to find a place to refer to
it. Without a location, actions such as a query cannot occur. This requires
the naming and allocation of reference resources. The naming allows your
application to maintain multiple, unique data locations. Your application may
maintain separate areas for various reasons, including performance, security,
comparisons, and the like.

For Jena, it all begins with the creation of a Model object. The Model class
contains a reference to the Semantic Web data along with methods to manage
its contents. There are several different types of models your application can
request that reflect various levels of inference support. The various model
types reflect the various Semantic Web languages, such as RDF, RDFS, and
OWL. In addition, the model may allocate memory or database storage. We
illustrate creating an OWL model residing in memory and in a database.

The code that follows illustrates creation of a memory-based OWL model.
Initially, this model contains initialization data from the included specification.
An OWL specification includes OWL, RDFS, and RDF schema data. Without
the OWL specification, the model would be completely empty. In either case,
the model does not contain any domain or application data.

private void aquireMemoryForData(){

modelMem =

ModelFactory.createOntologyModel(OntModelSpec.OWL DL MEM);

}
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The static method, ModelFactory.createOntologyModel(), creates an
empty model. The argument specifies types of entailments that occur
within the model. The OWL DL MEM specifies no additional inference within
the model until we bind a reasoner. If instead your application required
only an RDF model, you’d substitute the createModel() method for the
createOntologyModel() method. You can also create models from existing
Model objects and graph-based objects. Graphs form a low-level interface to
the actual storage. Your application can choose to directly implement the
graph interface to allow substitution of the storage mechanism; more on that
later in this chapter.

In addition to the straightforward use of the ModelFactory, you can also
form advanced versions of the models through the creation of a ModelMaker
object instead of direct creation of a model using the ModelFactory. Advanced
models provide additional inference and storage options. This requires three
steps:

1. Create the ModelMaker object.

2. Use the ModelMaker object to create a basic model.

3. Use the newly created basic model to create a more advanced model.

We perform this three-step process for two types of models: a memory
model backed by file storage and a database-backed model.

The code for the memory model backed by a file store is as follows:

private void aquireMemoryForData(){

ModelMaker modelMaker =

ModelFatory.createFileModelMaker

("/Users/jhebeler/filestore/filesave.owl/");

Model modeltmp = modelMaker.createDefaultModel();

modelMem =

ModelFactory.createOntologyModel(OntModelSpec.OWL DL MEM, modeltmp);

}

Here we create a ModelMaker object instead of directly creating a model
using the ModelFactory.createFileModelMaker() method. The method
requires the name of a file for the storage of the file. If the file already
contains RDF/XML data at the model’s creation, the file populates the model
during its creation. When the model is closed, the contents of the model are
written to the file in RDF/XML format. Note that it doesn’t refresh the data
stored in the file during model operations. It updates the file only when
closing the model. This step creates only a basic RDF model, a limitation of
a created ModelMaker. In order to create an ontology model, we use the
ModelFactory.createOntologyModel()method as before but now provide an
additional argument, the basic model we created with ModelMaker.
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Next is the creation of a database-backed model. This is a bit more involved
because of the logistics of establishing the database connection. The code illus-
trates the same three-step approach. The following code illustrates the creation
of an OWL-based model stored in a MySQL relational database. Jena supports
other databases including PostgreSQL, Oracle, and Microsoft SQL Server; see
http://jena.sourceforge.net/documentation.html for additional details.

private void aquireDBForData()

throws SQLException, ClassNotFoundException {

IDBConnection conn = null;

Model modeltmp = null;

Class.forName("com.mysql.jdbc.Driver");

System.out.println("JDBC Driver found");

String DB URL = "jdbc:mysql://semwebprogramming.org/jenaDB";

String DB USER = new String("jenaUser");

String DB PASSWD = new String("jenaPassword");

String DB TYPE = new String("MySQL");

conn = new DBConnection(DB URL, DB USER, DB PASSWD, DB TYPE);

if(conn.getConnection() != null) // throws exception

System.out.println("Connection Successful");

ModelMaker maker = ModelFactory.createModelRDBMaker(conn);

//check to see if the model is already present

if(conn.containsModel("FoafInstancesDB")){

System.out.println("Opening existing model");

modeltmp=maker.openModel("FoafInstancesDB",true); //throws

exception if not present

}

else {

System.out.println("Creating new model");

modeltmp = maker.createModel("FoafInstanceDB");

}

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL MEM);

modelDB = ModelFactory.createOntologyModel(spec,modeltmp);

}

This code illustrates a connection to a MySQL database using JDBC. The
first part of the method checks for and, if possible, acquires the necessary JDBC
driver. Then the method declares the necessary database access information
including the host address, login information, and database name (for example,
jena), which is contained in the URL. We could have combined them here but
kept them separate for clarity. We then establish a connection to the database
and check it with the getConnection() method. This method generates an



Chapter 8 ■ Applying a Programming Framework 279

exception if there is no connection. Otherwise, your application might hang.
We create a database ModelMaker object through the createModelRDBMaker()
method. We check to see whether the model already exists in the database
from previous interactions. The DBConnectionobject method containsModel()

determines whether the name is set to FoafInstancesDB. If the data already
exists, we use the ModelMaker.openModel()method to open the basic model. If
it doesn’t exist, we create a new one through the ModelMaker.createModel()

method providing its name. Finally, we need to turn this basic model into one
that supports OWL. We call the createOntologyModel() method providing
the model already created. Thus, the three-step process is applied: obtain
a ModelMaker object; create a basic model, in this case a database-backed
model; and then advance the basic model to an ontology-based model. You
must set up the database with appropriate access permissions prior to this
method call. You do not need to create any relational tables and columns. The
database itself is sufficient. Please refer to your specific relational database
documentation for more information.

Populating the Model with Semantic Web Data
Now that you have a reference to storage for your Semantic Web data, you
need to populate it. There are several ways to populate the model. You can
populate the model from a file, from a URL, and from adding statements
directly. You can also populate through other existing models, and we look at
that in the next section.

Populating the model by a file or URL is straightforward. You just provide
the filename with its path or the URL. Here are examples of both:

private void addDataFromFile() throws IOException{

System.out.println("Loading from FOAF instance File");

InputStream inFoafInstance =

FileManager.get().open("Ontologies/FOAFFriends.rdf");

modelDB.read(inFoafInstance,defaultNameSpace);

inFoafInstance.close();

}

private void addDataFromURL(){

System.out.println("Loading FOAF ontology URL");

modelMem.read("http://xmlns.com/foaf/spec/index.rdf");

}

For the file, you need to create an InputStream and then pass that to the
read() method. Using the Java InputStream enables flexibility in dealing
with stored data. An InputStream is a base class for many other useful ways
of dealing with data. See Java SDK Javadocs for more information. For the
URL, you simply provide the URL. Note the possible thrown exception,
IOException, because of missing or unavailable data.
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The two methods, using files and URLs, provide a batch way to load
large numbers of statements; however, this technique is useful for relatively
static information. Your application may want to add statements dynamically
directly to the model. For that we directly form Jena resources into Jena
statements. The following code demonstrates adding a statement through the
creation of resources:

private void addDataFromStatements(){

System.out.println("Adding statement to model");

// Create resources

Resource resource = modelDB.createResource(defaultNameSpace + "me");

Property prop =

modelDB.createProperty("http://www.w3.org/2002/07/owl#sameAs");

//Property prop2 = OWL.sameAs();

Resource obj = modelDB.createResource(defaultNameSpace +

"Individual 5");

modelDB.add(resource,prop,obj);

// or

modelDB.add(resource,OWL.sameAs,obj);

}

We created three Jena resources. The Jena property is a type of Jena
resource. We provide all three to the add() method for the model that receives
the statement. Important note: If you don’t execute the add() method, it is
not added to the model. You could also include an additional step to create a
Jena statement first and then add the statement through a createStatement()

method call to the model. There are two ways to reference the property for
OWL:sameAs. You can use the brute force method of forming the property or
use the Jena premade resources. Jena contains all RDFS and OWL constructs as
static resources. We add additional OWL statements in the code that follows.
One final note; the createResource() method always returns a resource but
doesn’t always create one. If the resource already exists in the model, it merely
returns the existing one. Therefore, you need not worry about duplicating a
resource.

Jena offers an ontology-based interface that provides methods to create var-
ious OWL constructs such as sameAs, equivalentClass, and OWL restrictions.
The following code adds statements via this ontology interface:

private void addDatafromOntology(){

Ontology ont = modelMem.createOntology("Memory Model");

ont.addVersionInfo("1.0");

OntClass people = modelMem.createClass(defaultNameSpace + "People");

OntClass individual =

modelMem.createClass(defaultNameSpace + "Individual");

people.addEquivalentClass(individual);
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OntClass friend = modelMem.createClass(defaultNameSpace + "Friend");

friend.addSubClass(people);

OntProperty hasFriend =

modelMem.createObjectProperty(defaultNameSpace + "hasFriend");

// Create restriction

OntResource joe =

modelMem.createOntResource(defaultNameSpace + "Joe");

OntResource joseph =

modelMem.createOntResource(defaultNameSpace + "Joseph");

OntResource jane =

modelMem.createOntResource(defaultNameSpace + "Jane");

joe.addSameAs(joseph);

modelMem.add(joe, hasFriend, jane);

}

The ontology methods offered by the OntClass Jena class provide annota-
tions regarding the ontology. As mentioned in Chapter 6, annotations are not
subject to reasoning. Here we set the ontology version for our ontology to 1.0.
We then create two classes, People and Individual. Then we make the two
classes equivalent. We declare a subclass, Friend. Lastly, we create an object
property and two ontology resources, joe and joseph. We establish instance
equivalence by using the addSameAs() method. Finally, we add the statement
that joe has Friend jane. Note that a reasoner would infer that joseph also has
the friend jane.

Jena also provides methods to create reified statements. As noted previously,
reified statements are statements about statements. Jena simplifies this by also
allowing a complete Jena statement to be a resource. In this case a special
resource is called a reified resource. The following code creates a reified
statement and then adds it to the model.

private void addReifiedStatements(){

Resource resSubject = modelMem.getResource(defaultNameSpace + "Joe");

Property prop = modelMem.getProperty(defaultNameSpace + "seenAt");

Resource resObject = modelMem.getResource(defaultNameSpace +

"Wendys");

Statement state = modelMem.createStatement(resSubject, prop,

resObject);

Resource reifiedResource = modelMem.createReifiedStatement(state);

Property propseen = modelMem.getProperty(defaultNameSpace +

"atTime");

modelMem.add(reifiedResource, propseen,

"xsd:dateTime 2008-10-26T21:32:52");
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RSIterator iter = modelMem.listReifiedStatements();

while(iter.hasNext()){

ReifiedStatement rei = iter.nextRS();

StmtIterator iter2 = rei.listProperties();

System.out.println("Statement: " +

rei.getStatement().getSubject().toString() +

" " + rei.getStatement().getPredicate().toString() + " " +

rei.getStatement().getObject().toString());

while( iter2.hasNext()){

Statement st = iter2.nextStatement();

System.out.println("Reified Statement: " +

st.getPredicate().toString() + " " +

st.getObject().toString() );

}

}

}

In order to create a reified statement, we first need a regular statement—the
statement that we are going to make a statement about. In this case we create
a statement: Joe SeenAt McDonalds. Now we want to note the time Joe was
seen at McDonalds, which was late! In order to do this we need to create a
reified statement. So we turn the statement we created into a resource through
a call to the model createReifiedStatement() method. This returns a valid
resource we can use in another statement. We create an additional property,
atTime, and we are all set. We create the statement that contains the reified
resource along with the other two resources. This notes that Joe as seen at
McDonalds at 12:30 a.m., thus creating a statement about a statement. Just
for completeness, the code also iterates through the statements and reified
statements and prints out the results. We need two iterators: one to walk
through the reified statements and one to walk through any statements related
to the specified reified statement. Here we had only one, but you can have
as many as you want. Keeping with the example, reified statements could
note whom Joe was with, what he ordered, how much it cost, and so on, all
referring to the same visit to McDonalds, which refers to only the one original
statement.

Combining Semantic Web Data
You can also populate a model from other existing models. You can simply
add all statements from one to the other or selectively add statements. The
following code takes you through multiple ways to add statements from one
model to another.

private void combineData(){

Model modelNew;

// Add two models together model1.add(model2)
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//allows cascading

modelMem = (OntModel) modelMem.add((Model) modelDB);

// Union of two models model1.union(model2)

modelNew = modelMem.union( modelDB); //creates a new model

// Intersection of two models model1.intersection(model2)

modelNew = modelMem.intersection( modelDB); // creates a new model

// Difference of two models model1.difference(model2)

modelNew = modelMem.difference( modelDB); // creates a new model

// Are two models equal model1.equals(model2)

if( modelNew.equals( modelMem)){

System.out.println("Underlying Graph Objects are identical");

}

if ( modelNew.isIsomorphicWith( modelMem)){

System.out.println("Model Statements are identical");

}

}

In our example we declared a new model, modelNew. This is not necessary.
You can also use an existing model. The add() method simply copies all
the statements in the parameter model modifying the model. The union()

method is analogous to the add but eliminates any duplicate statements. The
intersection() method produces a model with only statements that are
contained in both of the models. The difference() method contains only
statements that are unique to both models. Only the add() method modifies
the original model. The other methods merely augment the model.

For completeness, the code also demonstrates comparisons between two
models using the equals() method, which tests for the same underlying
Graph objects, and using the isIsomorphicWith() method, which tests for the
same statements in each model.

Interrogating Semantic Web Data
Now that we have a Jena model populated with Semantic Web data, we can
interrogate the data. Jena allows three basic approaches: search, navigate, and
query. Search finds identical matches within the data—a simple query really
that merely matches a string without any semantics. Navigate follows the path
outlined by the various relationships to find data. Navigation can be quite
powerful given the description of the various relationships in Semantic Web
data. Finally, query uses a formal query language; SPARQL. Previously we
covered the data techniques and the SPARQL language; now we demonstrate
the interrogation code using Jena.
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private void searchAndNavigateData(){

// Search to find me

Resource me = modelDB.getResource(defaultNameSpace + "me");

// Navigate around me

StmtIterator iter = me.listProperties();

int count = 1;

while (iter.hasNext()){

System.out.println("Property " + count++ + ": " +

iter.nextStatement().getObject());

}

}

The code first starts with a search for an exact match on a Jena Resource
object. It is important to note that the getResource() method operates iden-
tically to the createResource() method. In other words, it always finds the
resource; if the resource doesn’t exist, getResource creates it. Once we have
the resource, we can use it to navigate various ways depending on the existing
relationships. Here we examine all the properties of the resource. Since many
properties can be related to a resource, we use an iterator to step through the
entire set. In addition to the listProperties() method, there are many other
list methods to navigate through the model; see the Jena Javadocs. The Jena
StmtIterator specializes the standard Java iterators with extra methods to
return statements and a close() method to free resources if the application
does not complete the iteration.

Queries offer formal interrogation of the Semantic Web data. Jena contains
a SPARQL query processor to translate SPARQL queries to a result set for
a SELECT query or graphs for a CONSTRUCT query. We covered the SPARQL
language in Chapter 6, so we need not repeat it here. Instead we focus on using
SPARQL within the Jena framework. The code that follows does just that for a
SELECT query:

private void queryData(){

StringBuffer queryStr = new StringBuffer();

// Establish Prefixes

//Set default Name space first

queryStr.append("PREFIX people" + ": <" + defaultNameSpace + "> ");

queryStr.append("PREFIX foaf" + ": <" +

"http://xmlns.com/foaf/0.1/" + "> ");

//Now add query

queryStr.append

(" select DISTINCT ?name where{ people:me foaf:name ?name }");

Query query = QueryFactory.create(queryStr.toString());

QueryExecution qexec = QueryExecutionFactory.create(query, modelDB);

try {

ResultSet response = qexec.execSelect();
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while( response.hasNext()){

QuerySolution soln = response.nextSolution();

RDFNode name = soln.get("?name");

if( name != null ){

System.out.println( "Hello to " + name );

}

else

System.out.println("No Friends found!");

}

} finally {

qexec.close();

}

This may look familiar because it is the same code we use in the Hello
Semantic Web World Tour. Now we examine it a bit closer. First, we create
a StringBuffer object to eventually contain the full SPARQL query. Next we
place our prefix shortcuts to save us from typing in the long URIs. After
that we add in the actual query. Now we have the entire query string. We
use the QueryFactory.create( ) method to create a valid Jena Query object.
We use the QueryExecutionFactory.create() method to execute the query
against the model contained in the parameters. This returns a context to the
query in the form of a QueryExecution object. From the QueryExecution
object we obtain the ResultSet object. It contains statements that fulfilled the
query. Keep in mind that it is possible to have no statements or many state-
ments in a ResultSet. The ResultSet object implements the Iterator interface.
We step through the iterator to get the entire results. Each statement in
the result requires the ResultSet to provide a QuerySolution object. Within
the QuerySolution object, we request a given variable that was provided
in the SPARQL query. This variable could be many possible objects, so we use
the simplest possible object, an RDFNode, to receive it. We could typecast it if
we know the type of the variable returned. The RDFNode object contains null
if the ResultSet does not contain a binding for the specified variable.

Reasoning across Semantic Web Data
Another important aspect beyond interrogating the Semantic Web data is
reasoning across the data, realizing the full power of semantics. For that we
need to integrate reasoners beyond what is already present in the model. The
Jena framework offers several ways to integrate reasoners. The operation is
similar to creating a more advanced model from a simpler one, as illustrated
earlier, such as going from an RDF file-backed model to an ontology model.
We incorporate two major types of reasoners: inference reasoners and rule
reasoners (although they are treated similarly within Jena). Chapter 4, ‘‘Incor-
porating Semantics,’’ and Chapter 7, ‘‘Adding Rules,’’ covered the operations
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and languages of both. Here we show how the Jena framework integrates the
reasoners.

In addition, reasoners exists as three distinct types: internal reasoners built
into the Jena framework, external reasoners offered as external Java files,
and external reasoners remotely offered via the DL Information Group (DIG)
interface. The DIG interface is a standardized XML interface to description
logics reasoning via an HTTP interface.

We illustrate an internal Jena reasoner for inference in this code:

private InfModel bindJenaInferenceReasoner(){

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

reasoner = reasoner.bindSchema( modelMem);

InfModel inferredFriends =

ModelFactory.createInfModel(reasoner, modelDB);

return inferredFriends;

}

We get the OWL reasoner contained in the Jena framework through the
ReasonerRegistry.get() method. The ReasonerRegistry holds references to
all of the Jena reasoners. We take an extra step here and bind the reasoner to
a given model that holds the ontology or schema. A reasoner may interact or
bind to multiple models. This allows the reasoner to reason across the schema
prior to the addition of instance data. This makes no real difference when
using one instance data model; however, the approach gains efficiencies when
using two or more models that contain instance data for the same ontology.
Then we use the ModelFactory.createInfModel() method to create a new
model that combines the reasoner and model provided in the parameters.
Here is where some of the virtualization of the Jena model comes into play.
When you combine a reasoner with a model, the new inferred model contains
not one but two graph-based objects. One Graph object contains the original
model statements. The other graph contains only the entailments. Thus, the
original model is still available to your application. Your application could
retrieve statements directly from the original model if statements derived from
the reasoner are to be avoided. This also allows Jena to discard entailments
quickly, which may be required on large additions to the model when the
reasoner must run against the new data. Thus, the graphs reflect a lower-level
object that can combine to form one model. This virtualizes the Jena model to
allow combinations of included graphs.

The bound reasoner chosen previously (OWLReasoner) provides OWL
entailments that cover OWL constructs such as sameAs, SymmetricProperty,
maxCardinality, and the like. Your application may not need that level
of inference because of the language used, desired results, or performance
considerations. There are several other native reasoners including an RDFS
reasoner to support RDFS entailments and a transitive reasoner for entailments
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only because of symmetric and transitive properties in RDFS. See the Javadocs
under ReasonerRegistry for the complete list. This allows your application
to tune entailments to your needs. Your application obtains the available
reasoners from the static ReasonerRegistry methods as we did previously.

Another type of Jena reasoner is its general-purpose rule engine. It contains
its own rule language with useful methods to construct if/then rules. Here is an
example of using the Jena general-purpose rule engine. The Jena rule language
was briefly covered in Chapter 7.

private InfModel bindJenaRuleReasoner(){

String rules =

"[emailChange: (?person <http://xmlns.com/foaf/0.1/mbox> ?email), " +

"strConcat(?email, ?lit), regex( ?lit, '(.*@gmail.com)’) -> " +

"(?person <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> " +

"<http://org.semwebprogramming/chapter2/people#GmailPerson>)]";

Reasoner ruleReasoner = new

GenericRuleReasoner(Rule.parseRules(rules));

ruleReasoner = ruleReasoner.bindSchema( modelMem);

InfModel inferredFriends =

ModelFactory.createInfModel(ruleReasoner, modelDB);

return inferredFriends;

}

The string rules contains the rule in the Jena rule language format. The
first field provides a name of the rule, emailChange. The first part of the rule
contains the if portion, or body. The body declares a variable, ?person. That
variable must have an mbox. The mbox object is placed in another variable,
?email. Next we use a Jena rule method, strConcat(), to copy the ?email

variable contents into a literal variable, ?lit. This ensures that ?lit is a literal
value that is needed by the next method. We then call another Jena rule
method, regex(). This method matches a string that contains ‘‘@gmail.com.’’
If there is a person with an email address that contains gmail.com, the body,
or if portion of the rule, is true. Thus, the head, or then portion, is executed or
fired. This adds a new statement to the model bound to the reasoner that takes
the same person contained in the ?person variable and declares that person a
type of the GmailPerson class.

It is important to note the direction of the arrow between the head and
body in the Jena rule. Here the direction is to the right, indicating forward
chaining of the inference. You can reverse the direction to achieve backward
chaining. Keep in mind that a rule can contain several subrules, which allows
you to mix forward and backward chaining. There is an excellent reference
document on the Jena site at http://jena.sourceforge.net/inference/ that
covers additional details and provides additional examples for each reasoner.
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We have now covered the reasoners internal to Jena. Next we will examine
methods to integrate external reasoners. As mentioned before, external rea-
soners integrate into Jena through two means: via the Java class path directed
to a .jar or class file or a remote DIG interface. We cover the class path
file implementation first. Typically this is faster because of the lack of any
networking to interact with the reasoner; however, the reasoner exists in the
same application space.

First we examine an external reasoner, Pellet. Pellet is available at http://
pellet.owldl.com. Pellet is Java based and therefore offers a convenient .jar-
contained interface. Non-Java-based reasoners may also offer this access by
providing a JNI interface. In either case, Jena enables direct access to the
reasoner’s capabilities. The Pellet reasoner offers OWL and SWRL inference.
Along with the necessary Java .jar files, the Pellet download includes exten-
sive documentation and examples. The following code integrates the Pellet
reasoner:

private InfModel bindPelletReasoner(){

Reasoner reasoner = PelletReasonerFactory.theInstance().create();

reasoner = reasoner.bindSchema( modelMem);

InfModel inferredFriends =

ModelFactory.createInfModel(reasoner, modelDB);

return inferredFriends;

}

The Pellet reasoner integrates similarly to a Jena internal reasoner. Using
PelletReasonerFactory.theInstance().create() produces a Jena Reasoner
object. The Reasoner object binds to a schema in just the same manner as a
Jena internal reasoner. So the rest of the method is identical.

If a reasoner does not allow direct access via a Java .jar file, the Jena frame-
work supports the DIG interface, a standard for reasoners. The DIG interface
is an XML standard for access to description logic processing via the HTTP
protocol. DIG’s future is unclear but remains a method for remotely interact-
ing with a reasoner. DIG is also less expressive than OWL description logic;
therefore, DIG incurs some loss because of incomplete coverage—see the DIG
documentation. The DIG-accessed reasoner runs as an external process that
you could distribute to a different host. The Pellet reasoner, used previously,
also offers a DIG interface. The following code demonstrates integrating the
Pellet reasoner using the DIG interface operating on port 2009.

private InfModel bindDigReasoner(){

System.out.println(“Entering DIG reasoner“);

Resource conf = modelMem.createResource();

conf.addProperty(ReasonerVocabulary.EXT REASONER URL,

modelMem.createResource(“http://localhost:8081“) );
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DIGReasonerFactory drf =

(DIGReasonerFactory) ReasonerRegistry.theRegistry().

getFactory(DIGReasonerFactory.URI);

DIGReasoner r = (DIGReasoner)drf.create(conf);

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL DL MEM);

spec.setReasoner(r);

OntModel m = ModelFactory.createOntologyModel(spec,null);

m.add( modelMem);

return m;

}

We first create a URI-based DIG reasoner factory. Then we create the
reasoner. We specify the reasoner’s hostname and port, and we associate
the reasoner with a specification. We configure the specification of an
ontology-based model and associate the reasoner instance with it. We then
create an ontology model using the reasoner specification. Finally, we add the
original model into the newly created one using the add() method.

Reasoners allow several operations to validate the model contents. The
following code takes you through a validation report.

private void validateDataFromModel(InfModel infModel){

System.out.println("Validation of "+

infModel.getReasoner().toString());

ValidityReport report = infModel.validate();

// returns true if Model is logically consistent (i.e. valid)

// and generates no warnings

if ( report.isClean() != true ){

Iterator<ValidityReport.Report> iter = report.getReports();

while( iter.hasNext()){

System.out.println

(((ValidityReport.Report)iter).isError?"ERROR: ":"Warning:" +

((ValidityReport.Report)iter).description);

}

}

else

System.out.println("Model is clean");

}

First we print out the name of the reasoner using the inference model
getReasoner() method. Then we use the validate() method to return a
ValidityReport object. The isClean() method returns true if the model is
logically consistent and has no warnings. Inconsistencies result from instance
statements or ontology statements that are in conflict. Warnings result in
classes that can never have instances. If isClean() returns false, we create an
iterator to deal with each invalid determination. The iterator steps through
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each report, first determining whether it is an error or warning and then
printing out the full description.

Exporting Semantic Web Data
Now that we have useful Semantic Web data, we need to export it for others to
use or maintain it for our future use. In upcoming chapters we cover dynamic
ways to expose our data. For now, we export to a file. The Jena Framework
offers a simple, straightforward way, as shown in the following code:

private void writeData() throws IOException{

FileOutputStream outFoaf= null, outFoafInstance=null;

outFoaf = new FileOutputStream("Ontologies/foaf.turtle");

outFoafInstance = new FileOutputStream

("Ontologies/foafInstance.turtle");

modelMem.write(outFoaf, "TURTLE");

modelDB.write(outFoafInstance, "TURTLE");

outFoaf.close();

outFoafInstance.close();

}

Most of this code is acquiring a FileOutputStream to absorb the Seman-
tic Web data. This can generate an IOException. Once we obtain a valid
FileOutputStream, we pass it to the write() method along with the desired
format. Here we use our preferred Turtle format. The Jena Framework also
offers RDF/XML, RDF/XML-ABBREV, N-Triple, and N3 formats. The write()
method defaults to RDF/XML if the format is blank.

Deallocating Semantic Web Data Resources
The last major step releases the references to the various resources used to
manipulate your Semantic Web data. This requires only two methods: one to
clear out the storage, which is optional, and one to close it down to release all
resources and perform final actions. Note that you can clear the contents at
any time. The following code illustrates both actions:

private void clearAndCloseData(){

modelMem.removeAll();

modelDB.removeAll();

System.out.println("Closing Models");

modelMem.close();

modelDB.close();

}

The removeAll() method clears all statements in the given model. The
removeAll() method can also take parameters to remove specified subsets
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of the model. The subsets include matches on a specified subject, predicate,
object, or reified statement combinations. Removing reified statements uses
the removeReification() and removeAllReifications() methods. It is not
necessary to remove statements prior to close. It is demonstrated here in case
you wish to reuse the model or part of it.

The close() method returns all resources associated with the model and
manages any connections to storage devices, such as closing database connec-
tions or writing out file contents.

Managing Semantic Web Data
We have demonstrated a complete life cycle of using the Jena Semantic
Web Framework classes and methods in dealing with Semantic Web data.
This covered creation to deallocation of Semantic Web data; however, there
are other areas to consider when managing and programming Semantic
Web data. These include getting information regarding your Semantic Web
data, event notification of changes in your Semantic Web data, dealing with
concurrent operations on your Semantic Web data, and customizing the
Jena Framework. These operations reflect the realities of programming in a
multiuser, event-driven environment.

Getting Information Regarding Your Semantic Web Data

Information regarding your Semantic Web data or model offers useful insights
into its operations. This code demonstrates a few basic areas:

private void getDataStatus(Model m){

// Test of empty

System.out.println("Model is " + (m.isEmpty()?"":"not" )+ " empty!");

// Size of model

System.out.println("Model Size: " + m.size());

// Supports Transactions?

System.out.println("Model does " +

(m.supportsTransactions()?"":"not" )+ "support transactions.");

// List namespaces used within Model

NsIterator iter = m.listNameSpaces();

int count = 1;

while( iter.hasNext()){

System.out.println("Namespace " + count++ + ": " + iter.nextNs());

}

}

The preceding code performed four information-gathering methods. The
isEmpty() method returns a Boolean regarding whether there are statements
in the model. The size() method returns the number of asserted statements
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or a lower bound of statements when including inferred statements. The
supportsTransactions() method indicates whether the model handles tra-
ditional transactions. With transactions, all modifications occur atomically or
not at all. The Model interface supports transactions with a begin() method
to mark the start of the transaction modifications to the model. The end
of the transaction is marked with either the commit() method to execute
all modifications or the abort() method to discard all modifications. The
listNameSpaces() method lists all the namespace abbreviations contained
within the model. You can add namespace abbreviations at any time through
the static class PrefixMapping.Factory methods that are inherited by the Jena
Model class.

Generating Events Based on Semantic Web Data

Event-driven programming allows your program to react to events rather
than loop waiting for them to occur or worse, never realizing that a critical
event occurred. In addition, loop constructs incur latency waiting for the
next call of the polling loop. Typically, event-driven programming allows the
application to register interest in a given event with an associated callback
function. This allows efficient reactions to critical programming events. For
example, reasoners take advantage of events by employing callbacks to adjust
entailments resulting from modifications in the model.

The Jena Framework works similarly. Your application registers a callback
object for a given event of interest. The callback object includes several
different event methods. The framework executes the callback method when
the appropriate event occurs, possibly passing context regarding the event.
The Jena Framework lets your application subscribe to the following events:

Any object added or removed from a specified model

A single statement added to or removed from a specified model

A list of statements added to or removed from a specified model

A model added to or removed from the specified model

An array of statements added to or removed from a specified model

Contents of a statement iterator (StmtIterator) added to or removed
from a specified model

The Jena Framework offers a base class, ObjectListener, to handle callbacks.
Your application need only extend this class and then register an object of this
class with the specific model. Following is an example of an extension to the
ObjectListener class:

public class JenaListener extends ObjectListener {

String modelName=null;
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JenaListener( Model m, String name){

modelName = name;

}

public void notifyEvent(Model m, Object o){

System.out.println(modelName + ": Event Occured");

}

public void addedStatement(Statement s){

System.out.println(modelName + ": Statement added");

}

}

The class JenaListener extends the Jena class, ObjectListener. The con-
structor receives the name of the model to use in console output. The class
overrides two event methods, notifyEvent() and addedStatement(). Both
merely print out a message. Nevertheless, they are provided with the context
of the event, allowing a more powerful operation. We need to create an object
based on this class and then associate it with a model that requires events
processing. The following code does just that:

private JenaListener listenerMem = null, listenerDB = null;

private void setEventListener(){

modelDB.register( listenerDB);

modelMem.register( listenerMem);

}

We created two objects based on JenaListener class: one associated with the
memory model and one associated with the database model. We then regis-
tered the appropriate one with each model using the register()method. Now,
every time a single statement is added to either model, the addedStatement()

callback method for the correct model executes.

Dealing with Concurrency and Your Semantic Web Data

Concurrency within a Jena model occurs in two ways: concurrent access
within the same application because of multiple threads and concurrent access
from multiple applications including multiple users. We deal with each one
in different ways. Concurrent operations devoid of control mechanisms such
as locks can provide inconsistent, corrupt results when performing multiple
operations on the model. Defects resulting from concurrent interference are
hard to localize because of the intermittent nature of concurrent operations.

Concurrent activities from different threads in the same application can
cause data inconsistencies because the Jena Framework is not inherently
thread-safe. Jena model iterators are especially suspect: they do not make a
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copy; rather they keep going back to the model for each iteration. Therefore
your application must take additional steps if doing concurrent operations
because of multiple threads. The Jena Framework contains a basic locking
approach within each model. The following code demonstrates the declaration
of a critical region within model access.

private void criticalRegionWrite(){

try {

modelMem.enterCriticalSection(Lock.WRITE);

// Do critical stuff writing to model

}

finally { // make sure you always give it up

modelMem.leaveCriticalSection();

}

}

Each model controls a lock for either writing or reading. The enterCritical
Section() method acquires a lock for the appropriate action, reading or
writing. A read lock prevents other threads from creating a write lock but
allows any other thread to create a read lock. A write lock prevents other
threads from establishing either a read or write lock. The method blocks if the
lock is not available. The leaveCriticalSection() method returns the lock
and wakes up any threads awaiting a lock. The basic approach used in the
Jena Framework creates possible deadlocks, so your application must always
release the lock. This is accomplished by using the finally clause in a try/catch
and calling the leaveCriticalSection() method. You can use a Java timer to
escape from a deadlock condition if the block takes too long—or better yet,
use the Java 1.5 Lock class, which allows interruptions generated by a timer.
Keeping a lock for extended time periods can cause serious performance issues
with the overall application.

Concurrent activities from different applications and users are not addressed
directly by the Jena Framework. Rather, the Jena Framework depends on
managing external threads from a web server or using database locking for
such concurrent operations. The latter requires the use of a Jena model based on
a transaction-supporting database. The code example uses transactions. This
would provide the necessary thread protection during concurrent operations.

private void transactionModel() throws BackingStoreException {

try {

if ( modelDB.supportsTransactions() != true){

BackingStoreException exc =

new BackingStoreException("Does not support transactions");

throw exc;

}

modelDB.getGraph().getTransactionHandler().begin();

// Do transaction stuff
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modelDB.getGraph().getTransactionHandler().commit();

}

catch (Exception e) {

System.out.println("Transaction aborted due to " +

e.getMessage());

modelDB.getGraph().getTransactionHandler().abort();

}

}

The example tests whether the model supports transactions. If so, it starts a
transaction and then appropriately commits or aborts the transaction. Locking
would occur automatically depending on the database configuration. Just in
case of an unexpected exception, the program aborts the current transaction
with the abort() method. It is not recommended to catch all exceptions but it
is coded here for simplicity.

Customizing the Jena Framework

The Jena Framework allows customized implementations to provide flexibil-
ity. Remember that a model actually consists of a collection of objects that
implement a Jena Graph interface. The Jena Graph interface provides a limited
set of methods (see the Jena Javadocs for a complete list). Your application can
create a Java class that implements the Jena Graph interface to customize graph
behaviors such as altering the persistence implementation. For example, your
application could align the memory to achieve certain performance efficien-
cies given your particular application. Creating a custom model requires two
steps: the creation of the customized graph-based object and then the creation
of the model based on the customized Graph object. The following example
demonstrates the basic structure:

Model customModel = null;

private void createCustomModel(){

CustomGraph myGraph = new CustomGraph();

customModel = ModelFactory.createModelForGraph(myGraph);

}

public class CustomGraph implements Graph {

public void close() {

}

public boolean contains(Triple arg0) {

return false;

}

public boolean contains(Node arg0, Node arg1, Node arg2) {
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return false;

}

public void delete(Triple arg0) throws DeleteDeniedException {

}

public boolean dependsOn(Graph arg0) {

return false;

}

public ExtendedIterator find(TripleMatch arg0) {

return null;

}

public ExtendedIterator find(Node arg0, Node arg1, Node arg2) {

return null;

}

public BulkUpdateHandler getBulkUpdateHandler() {

return new CustomBulkUpdateHandler();

}

public Capabilities getCapabilities() {

return null;

}

public GraphEventManager getEventManager() {

return new CustomGraphEventManager();

}

public PrefixMapping getPrefixMapping() {

return new CustomPrefixMapping();

}

public Reifier getReifier() {

return new CustomReifier();

}

public GraphStatisticsHandler getStatisticsHandler() {

return new CustomGraphStatisticsHandler();

}

public TransactionHandler getTransactionHandler() {

return new CustomTransactionHandler();

}

public boolean isClosed() {

return false;

}
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public boolean isEmpty() {

return false;

}

public boolean isIsomorphicWith(Graph arg0) {

return false;

}

public QueryHandler queryHandler() {

return null;

}

public int size() {

return 0;

}

public void add(Triple arg0) throws AddDeniedException {

}

}

We declare a model, customModel. Then we declare the customized Graph
object, myGraph. (Note that this is notional implementation that wouldn’t do
much for your Semantic Web data because it contains only empty methods.)
We then use the ModelFactory.createModelforGraph() method, passing in
the myGraph object. We successfully substitute a new storage behavior. All
code within your application that uses the model methods remains unaware
of the substitution. Here we basically created a Unix /dev/null.

Serializing Semantic Web Data

Serialization offers the ability to transmit the model via various means and
then reconstitute it on its reception. Models and Graph objects are not directly
serializable. Nevertheless, you can take advantage of a model’s capability
to export a stream into a buffer that you can serialize. The following code
illustrates the serialization:

public byte [] exportModel(){

ByteArrayOutputStream io = new ByteArrayOutputStream();

model.write(io);

return (io.toByteArray());

}

SerializableModel serialModel =

new SerialzableModel( model.exportModel);

public class SerializableModel implements Serializable {

private byte graphbuf[];
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SerializableModel( byte graph[]){

graphbuf = graph;

}

public SemanticObject importModel(byte[] buf){

ByteArrayInputStream input = new ByteArrayInputStream(buf);

model.read(input,defaultNameSpace);

return this;

}

The first method exports the model data into a ByteArrayOutputstream. The
stream is then copied to the array. This byte array is an object variable in the
new class, SerializableModel, which implements Serializable. Once it is in
this form, the entire model can be stored or transmitted. The serialized data
then can be reconstituted through a reverse operation.

Common App Overview: FriendTracker

Our common application puts the Jena Framework and the associated concepts
to work in building an application that spans the next three chapters. Here we
introduce the project and outline the upcoming chapter coverage. Each chapter
covers a major aspect of using Semantic Web data with the application.

The FriendTracker application integrates several different online infor-
mation sources regarding one’s friends. The information merges into one
Semantic Web data model where the FriendTracker can search, navigate, and
query across all the sources as if they were in one model. This creates a
world of possibilities: you can track your friends across multiple sites and
services. In a sense, a real semantic concept of your friends emerges rather
than joe2345@aol.com and joe on Facebook. The FriendTracker lets you keep
up with your friends as they cross from one site to the next. That’s not all;
the FriendTracker also allows you to export the information in many formats
in addition to a Semantic Web format. Thus, the FriendTracker shares the
information with non-Semantic Web parties.

Of course, the main goal is not to produce a cool application but rather to
show off cool Semantic Web applications. We do this using the tools outlined
so far, from RDF to SPARQL to the Jena Semantic Web Framework we covered
in this chapter.

The FriendTracker has three technical goals that align with the next three
chapters:

Input data into a Semantic Web data model from several common
online sources. This requires interfacing via different protocols
and syntax and then performing a translation to a Semantic Web
data format. The FriendTracker inputs from four diverse sources
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of data, including Jabber Instant Messaging via the XMPP protocol,
Facebook via its Restful XML interface, upcoming.org (an event
service from Yahoo) via a standard file format, and WordPress
blogger via an interface into the MySQL relational database.

Align the diverse semantics into one unified knowledgebase. This
requires aligning the semantics across the various sources—so a
friend is really a friend regardless of the specific name employed,
such as friend, associate, partner, and the like. This allows seamless
interrogation and reasoning across the diverse data set.

Expose the semantic data in a variety of ways to make it available to
other applications even outside the Semantic Web. This includes a
SPARQL endpoint, RDFa, microformats, XML, and a simple HTML
page.

Chapter 9, ‘‘Combining Information,’’ focuses on getting data into the
Semantic Web. Chapter 10, ‘‘Aligning Information,’’ focuses on semantic
alignment of the data so that queries can span the entire data set. Chapter 11,
‘‘Sharing Information,’’ focuses on exposing the data and interrogation meth-
ods to others including non-Semantic Web methods.

Summary

This chapter covered the major operations of a Semantic Web framework
and illustrated those operations using the Jena Semantic Web Framework.
Hopefully, you played with the sample code and established confidence with
the concepts and the Jena Semantic Web Framework implementation. Now
you will put all those methods to work in the next three chapters as you build
and understand the FriendTracker Semantic Web application.
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9

Combining Information

‘‘Words, so innocent and powerless as they are, as standing in a dictionary, how
potent for good and evil they become in the hands of one who knows how to

combine them.’’

—Nathaniel Hawthorne

Pieces of information, like the words of a sentence, are more useful and
powerful when they are combined effectively. One of the major use cases in
the Semantic Web involves virtually integrating information from multiple
disparate sources. This process of integration can be decomposed into two
primary steps: bringing data into a common data model (in the case of the
Semantic Web, RDF) and describing the data using a common knowledge
model. Once combined in a common data model, the aggregate information
can be accessed and manipulated in a single model; however, the data is
still described using different vocabularies. For data to be fully integrated it
must be combined into a common data model and described using a common
knowledge model.

As an illustrative example, consider two disjoint databases, each with a
single table and a unique schema. One maintains the inventory at a store,
and the other maintains records for the transactions made at that store.
Combining these sources (as depicted in Figure 9-1) could be as simple as
merging the two databases, each with a single table, into one database with
two tables. By combining the data, it becomes a common data model and
representation, the tables of a relational database, but the two sources are
still disjoint conceptually. The two tables store information according to two
distinct schemas. To bring the information together and do higher-order
operations like reasoning and querying as though it were one contiguous
body of information, it must be integrated conceptually.

301
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Chapter 10, ‘‘Aligning Information,’’ explores the techniques and technolo-
gies critical to the task of integrating data conceptually. This chapter focuses on
combining data from various sources into the RDF model. More specifically,
this chapter is all about the techniques and technologies that you can use to
translate data from various formats into RDF. The first section of this chapter
focuses on the general concept of combining information and translating other
formats into RDF. The rest of the sections explore translating specific kinds of
data sources into RDF, including XML feeds, relational databases, Java objects,
and other representations and formats. Many but not all of the examples
throughout this chapter are targeted directly at the data sources for Friend-
Tracker. In some cases, the application of a particular exposure technique to
one of the FriendTracker data sources acts as a supplemental example that
extends the primary example. Each section covers diverse techniques and
technologies, presents multiple hands-on examples, and discusses the benefits
and drawbacks of each available option.

DB 1

TABLE 1

TABLE 1 TABLE 2

DB 2

TABLE 2

Figure 9-1 Two databases can be merged into a single database, but it’s not as easy to
integrate the information each contains.

The goal of these sections is not for you to become an expert in all of these
technologies but rather to raise awareness of and demonstrate the application
of each. The sections contain numerous hands-on programming examples and
are meant to serve as a basis for extension and reuse.

The objectives for this chapter are to:

Explore the general concept of combining information on the Semantic
Web
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Introduce the various approaches to combining information and
discuss the conditions under which each is most appropriate

Work through a number of specific technology examples that
expose various information sources to the Semantic Web as ontologically
described RDF

Take the first step toward establishing the FriendTracker application
by demonstrating how to expose each data source as RDF

Combining Information

A huge number of formats and representations are available for use by
developers and users to exchange and store information. Even among the
most common, there are variations and specializations tuned to specific use
cases and environments. This diversity is necessary; it exists to meet the
requirements of a diverse world in which no two applications and no two
environments are the same. Moreover, this diversity and competition are the
driving forces behind rapid development and innovation.

Representing Information
Consider some of the most common information storage and exchange
mechanisms:

Relational databases are often used to store information in applications
that must provide scalable performance under heavy user and data load.

XML is often used as an information interchange format for
applications that provide data to multiple diverse consumers.

Comma- or tab-delimited files are often used when the data is highly
volatile and users must frequently interact with and share the data.

Proprietary file formats are often used where other more common tech-
nologies cannot adequately meet all requirements of a more standard
format.

The goal of the Semantic Web is not to subvert these existing data repre-
sentations. Rather, the goal is to provide tools that make it easier to integrate
information across all formats and representations and schemas. RDF provides
a flexible, extensible data model that eases the task of combining data sets into
a common data model. The combination of the OWL Web Ontology Language,
SWRL rules, and SPARQL query language with RDF make it easier to bring
data sets together under a common knowledge model. These ideas are expressed
in Figure 9-2.
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DS 3DS 2DS 1

Combined Knowledge Model

Combined RDF Model

Semantic Web
Technologies

Figure 9-2 Disparate data sources can be combined into a common data model using
RDF. By adding the other Semantic Web technologies, they can also be integrated into a
common knowledge model.

Translating between Representations
It is challenging to translate between information representations for a number
of reasons. Among these is the fact that different representations have varying
levels of expressivity and make different assumptions about the underlying
information. These differences arise because each representation has been
designed for different users and a different environment. The consequence of
these differences is that you can’t always easily translate from one data repre-
sentation to another; or, once you’ve moved to the RDF data representation,
you can’t always go back to the original representation without losing some
expressivity. As we explore the various methods of moving between data
representations, we will raise and address many of these challenges.

Following is a list of some of the more significant questions that arise during
this process:

Will any information be lost in the translation process?

How do you maintain a record of where the translated data came from?
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Once in the new representation, is there any way to go back?

How do you handle streaming data? Temporally and spatially varying
data?

How do you handle large volumes of data?

Addressing the Challenges of Translation
These are legitimate concerns anytime you are translating data from one
representation to another. As each of the translation approaches is introduced
and explained, we will raise and address these concerns.

Maintaining Fidelity

As you move data from other representations to RDF and into the Semantic
Web, you will find that little detail is lost. In fact, you can gain a lot of
expressivity by defining an ontology that describes the RDF data. However,
there is a drawback to this condition, because attempting to translate the data
back to the original representation means losing any expressivity that was
gained. This issue is touched on in the upcoming subsection ‘‘Reversing the
Process.’’

Tracking Provenance Information

When you begin to pull together data from numerous sources, it becomes
increasingly important to track where that data came from. We will present
a number of ways to deal with provenance in large heterogeneous data sets
that range from appending metadata to individuals and property values to
generating base URIs that indicate the source of the data, as demonstrated in
Figure 9-3.

http://www.cnn.com#Article01

http://www.cnn.com

“11-7-2008” “~~~~~~”

Provenance Information

hasDate hasText
source

Figure 9-3 Provenance information is provided using metadata and resolvable URIs.
In this example, the article is clearly from CNN because the URI resolves to
http://www.cnn.com.
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Ideally, all resources have resolvable URIs that allow you to investigate the
source of individuals, properties, classes, and property values and get more
information about each; however, this tends to add complexity, and most of
the examples we present will omit this feature.

Reversing the Process
Even if you know where the data came from, it’s not always easy or even
possible to go back. The transformation may involve one-way functions in
which there is no straightforward way to undo or reverse the process. In
addition, the data may have been augmented or enriched once it was pulled
into the Semantic Web environment. If this is the case, it may not be possible
to represent this new information in the source representation. This often
leads to scenarios where you will move data into the Semantic Web, work
with it, add depth and meaning to it, and then move back into less-expressive
representations only when you have to or only temporarily in order to use
a legacy application. Essentially, it can create a one-way path for data that
is difficult to get around. This issue may be mitigated by asserting that data
flows only one way into your Semantic Web application or that the application
is read only. Otherwise, you may have to lose some of the data fidelity on the
way out of the Semantic Web representations.

Handling Varying Data
Another concern with translating data is how to handle data that varies across
a dimension such as time or space. Some data is static—historical records,
for example. This kind of data doesn’t change because it represents a piece
of information with full context intact. Consider the case in which you are
translating a current weather observation for your neighborhood (this will be
one of the examples this chapter uses). In this case, the concept of now has
to be codified and correctly represented with the context intact. This issue is
closely connected to fundamental challenges with data representation itself,
so we won’t deal with it in too much detail in the coming sections; however,
we’ll revisit it in later chapters.

Managing Data Volume
The final question that was raised involves handling large volumes of data.
As you will see in the examples you will explore, there are many different
approaches to translating data that use many different technologies. Each
technology has its own strengths and constraints. Among them is the ability
to perform translation on a stream of data rather than having to process the
entire data set at once. Unless you can subdivide your data into manageable
chunks, or have enough resources available to process it all at once, you will
need the ability to process the data as a stream.
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Some translation techniques add additional benefits, such as the ability to
perform reasoning over the data that is being processed or to perform advanced
functions like string manipulation or mathematical operations. Often the fea-
tures and benefits that give a method of transformation more expressiveness or
power come at the cost of scalability benefits like stream processing or minimal
resource requirements. Thus, managing data volume often means sacrificing
some of the flexibility and features you may enjoy with a smaller data set.

The various concerns we’ve introduced in this section will be discussed in
context in the sections that follow. Using this guidance, you will be able to
select the techniques that work best for your Semantic Web programming
requirements.

Introducing the FriendTracker Data Sources
FriendTracker is essentially an aggregator of information about a user’s social
networks. It pulls data from multiple sources of contacts and friends and
events and presents all of the information in a common application. This
chapter discusses the various techniques that you can employ to take data from
numerous distributed data sources, each with its own format or representation
or schema, and convert it into the common data model of RDF. The data sources
that FriendTracker pulls information from are these:

Facebook friend information from an XML web service

Jabber contacts derived from the Smack Jabber client for Java

Upcoming.org events from an XML web service

WordPress blog entries stored in a MySQL database

Facebook provides extensive information about a user’s friends and contacts
but doesn’t have the same depth of information regarding their real-time status
or activity. Jabber can provide real-time status information about contacts but
lacks the same level of biographic detail that Facebook provides. Upcoming.org
provides events and activities that may be related to individuals geospatially.
Finally, WordPress is a blog application that has posts from users who share
common interests or activities.

Each of these data sources provides a unique perspective on an individual’s
social interactions. By combining them, we develop a picture of a social
network that is greater than the sum of its parts.

Facebook XML Web Service

Facebook is one of the most popular social networking sites on the Internet.
Once you have a Facebook account, you can establish a network of friends
with whom you share pictures, messages, events, and personal information.
Facebook provides a number of APIs with which applications can integrate to
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access a specific user’s social network information. These APIs can be found
at http://developers.facebook.com. While there is no official client API, a
number of offshoot projects are developing clients for various programming
languages.

The Facebook data source for FriendTracker uses a custom client API to
query the web service over HTTP and retrieve the XML results as a stream. As
you will see later in this chapter, the Facebook data source is exposed as RDF
using XSL Transformations.

Jabber Java Client

Jabber (http://www.jabber.org) is a popular open-source messaging and
collaboration protocol that builds on the Extensible Messaging and Presence
Protocol (XMPP) to provide an open-instance messaging service. Some well-
known Jabber messaging implementations include Google’s chat application
(GChat) and the messaging service that is integrated with Google’s email
service. The Jabber data source for FriendTracker uses a Java Jabber client
API called Smack. Smack is maintained by Jive Software and can be found
at http://www.igniterealtime.org/projects/smack. The Jabber data source
uses Smack to access a user’s contact list and then uses a streaming Turtle RDF
writer to build an RDF representation of the data.

Upcoming.org XML Web Service

Upcoming.org is a website that maintains information about events and their
temporal and geospatial information. The site provides an XML web service
that can be accessed using HTTP to gather information about events local
to a specific location. The Upcoming.org data source for FriendTracker is
exposed by reading the data into custom Java classes by parsing the XML
using the Document Object Model (DOM) and then using a general-purpose
Java Reflection API–based RDF generator.

WordPress Relational Database

WordPress is a popular blogging application that you can download for free
from http://wordpress.org/download/.WordPress uses a relational database
to store all of its content. A PHP website queries the database to gather content
and generate HTML pages to display it. The WordPress data source for
FriendTracker is exposed as RDF using a tool called D2RQ. D2RQ is one of a
family of tools that exposes a relational database as a virtual RDF graph. In
this case, the relational database is MySQL with the WordPress schema.
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Exposing XML-Based Web Services as RDF

A huge number of XML data sources are available on the World Wide Web.
The prevalence of XML processing tools and XML’s simplicity and flexibility
have made it one of the most common formats for exchanging information.
This abundance of data, even if it isn’t RDF, is a great thing for you, the
Semantic Web programmer; because you can take advantage of the plethora
of XML technologies that are available to convert all of that XML data into
ontologically described RDF.

Moving to RDF from XML is relatively straightforward because there is an
XML syntax for RDF: RDF/XML. Some issues come up as a result of RDF and
XML being fundamentally different data structures. XML is a tree structure
made up of nodes. Each node can contain attributes that describe the node
or can contain other child nodes. A node can have no children, or it can be
a data node and simply store a value. XML schema can be used to describe
the expected structure and data types of the nodes in an XML document.
All of this can be done using RDF and OWL. Some challenges arise from
the structure of XML documents. RDF represents statements that connect
resources using properties in a graph-like structure. It is difficult to generate
a general-purpose XML-to-RDF translator because translating structure and
attribution into resources and relationships is not always straightforward.
Consider the following example XML document:

<?xml version="1.0" ?>

<people>

<person email="zcrawford@zeuscrawford.net" >

<name>Zeus Crawford</name>

<joined>1996</joined>

<telephone>(202)555-1337</telephone>

</person>

<person email="darklord@semwebprogramming.net" >

<name>Darklord Adams</name>

<joined>1996</joined>

</person>

</people>

The document contains a single element node called people that contains
two person nodes. Each person has an email attribute, a name node with a text
value representing the person’s name, and a joined node specifying the date
he or she joined this service. Zeus Crawford has a telephone node with a text
value representing his telephone number. To map this XML document into
an RDF representation, we need to decide how the various nodes are related.
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For example, it is apparent that the people node represents a set of people.
Each person node is a person who is a member of the set of people in the
document. Is the collection itself relevant? Is the relationship between the
collection of people and each individual person relevant? What is the best
way to represent this relationship?

In this example, person appears to represent the type of the node (the class
of objects to which it belongs). Should we treat person as a type or a property
or both? It connects two objects, but it also identifies the type of one of the
objects. These are just a few of the questions you will have to settle when you
work with XML as a data source.

The following subsections focus on various approaches to generating RDF
from XML data. Two approaches are presented in this section; each has
its own benefits and drawbacks and may or may not be applicable based
on the situation. The first approach involves translating XML into RDF using
Extensible Stylesheet Language Transformations (XSLT). The second approach
combines Java XML Bindings (JAXB) with the Velocity template engine to
produce RDF.

Introducing the Weather.gov XML Feed
To make it easier to compare the relative merits of various approaches to
exposing XML as RDF, the following examples will reuse the same XML source
document. The National Oceanic and Atmospheric Administration’s National
Weather Service maintains a website (http://www.weather.gov) that contains
both current and historical meteorological and hydrological data for the United
States. The website contains RSS and XML feeds providing current weather
observations for stations located throughout the United States. Below is a copy
of the XML weather feed for a station located near the Baltimore-Washington
International Airport that has been abridged for length. The full version of the
XML source file can be found in each of the Chapter 9 XML-to-RDF example
projects. The latest, live copy of the XML file is located on the Weather.gov
website at http://www.weather.gov/xml/current obs/KBWI.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>

<current observation version="1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=

"http://www.weather.gov/xml/current obs/current observation.xsd">

<credit>NOAA’s National Weather Service</credit>

<credit URL>http://weather.gov/</credit URL>

<location>Baltimore-Washington International Airport, MD</location>

<station id>KBWI</station id>

<latitude>39.19</latitude>
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<longitude>-76.67</longitude>

<observation time rfc822>

Mon, 27 Oct 2008 12:54:00 -0400 EDT

</observation time rfc822>

<weather>Overcast</weather>

<temp f>50</temp f>

<temp c>10</temp c>

<relative humidity>43</relative humidity>

<wind dir>Northwest</wind dir>

<wind degrees>310</wind degrees>

<wind mph>9.2</wind mph>

<wind gust mph>NA</wind gust mph>

<pressure mb>1015.5</pressure mb>

<dewpoint f>28</dewpoint f>

<windchill f>46</windchill f>

<visibility mi>10.00</visibility mi>

<copyright url>http://weather.gov/disclaimer.html</copyright url>

</current observation>

Exposing XML Using XSL Transformations
XSL Transformations (XSLT) is an XML language that is used to transform
XML documents into other XML documents. The typical use pattern involves
a processor that combines an XML source document with an XSLT document
to generate an output XML document. The XSLT contains template rules
that specify how to translate the elements of the source XML document into
elements of the output document. This chapter primarily deals with features
of XSLT 1.0. As a quick introduction, recall the XML weather feed from the last
section and consider the XSLT document that transforms it into RDF/XML.

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:w="http://www.semwebprogramming.net/2009/04/weather-ont#"

xml:base="http://www.semwebprogramming.net/weather"

version="1.0">

<xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes" />

<xsl:template match="/">

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xml:base="http://www.semwebprogramming.net/weather#"

xmlns = "http://www.semwebprogramming.net/weather#"

>
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<xsl:apply-templates />

</rdf:RDF>

</xsl:template>

<xsl:template match="current observation">

<w:WeatherObservation>

<w:source rdf:resource="{credit URL}"/>

<w:time>

<xsl:value-of select="observation time rfc822"/>

</w:time>

<w:location><xsl:value-of select="location"/></w:location>

<w:latitude><xsl:value-of select="latitude"/></w:latitude>

<w:longitude><xsl:value-of select="longitude"/></w:longitude>

<w:temperature f>

<xsl:value-of select="temp f "/>

</w:temperature f>

<w:windDirection rdf:resource="#{wind dir}"/>

<w:wind mph><xsl:value-of select="wind mph"/></w:wind mph>

<xsl:if test="wind gust mph != 'NA’">

<w:wind gust mph>

<xsl:value-of select="wind gust mph"/>

</w:wind gust mph>

</xsl:if>

<xsl:if test="weather">

<w:weatherDescription>

<xsl:value-of select="weather"/>

</w:weatherDescription>

</xsl:if>

<w:copyright rdf:resource="{copyright url}"/>

</w:WeatherObservation>

</xsl:template>

</xsl:stylesheet>

The document contains the stylesheet definition identified by the element
xsl:stylesheet, an output definition (xsl:output), and two rule templates
(xsl:template). The xsl:stylesheetnode defines the xsl, rdf, and wnames-
paces and identifies the version of XSLT being used. The namespaces of both
the input and output documents have to be defined for the XSLT processor
to be able to generate the output document correctly. The xsl:output node
optionally specifies that the output document is going to be XML, that the
encoding of the output document is UTF-8, and that the output document
should be produced with indenting. The XSLT defines two xsl:template

elements that are applied to the elements of the source XML document to
perform the transformation and generate the output XML document.
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When the XSLT processor is run, it will parse the source XML document
and then try to apply the templates contained in the XSLT document to the
nodes of the XML tree, starting with the root node and traversing the tree in
a depth-first manner. At each node, the templates of the XSLT are applied if
the XML Path (XPath) pattern specified in the match attribute of the template
matches the node of the source XML document. A template contains output
text or XML that will be generated along with embedded XSLT tags that
perform further processing. XSLT uses XPath to match a specific node or set
of nodes in the source document, and then it applies the appropriate template
to each of these nodes. The templates process the structure and values of the
nodes to generate an output document. Various XSLT elements are used to
control the logical processing of the XML nodes in the source document and to
control the generation of the output XML document. The coming sections will
explore many of these elements, but first it’s important to spend some time
introducing XPath.

Traversing XML Documents with XPath

XPath is a W3C standard language used to build path expressions that
identify specific nodes or sets of nodes in an XML document. The current
version of XPath is 2.0, although the examples discussed here deal only with
features from 1.0. Path expressions are constructed using a series of baseline
expressions combined with predicates, wildcards, and other operators. XPath
path expressions resemble directory paths in traditional file systems. A path
expression consists of a series of expressions separated by the / character.
Each expression represents a step through the hierarchical structure of an
XML document and toward the XML node or nodes that the path expression
identifies. Table 9-1 lists some of the expressions that can be used in an XPath
path expression and provides a description of each.

Table 9-1 Elements of an XML Path Expression

EXPRESSION INTERPRETATION

/ When used at the beginning of a path expression,
identifies the root of the document.

node-name Identifies the node node-name.

@ Identifies the attributes of the current node.

. Identifies the current node.

.. Identifies the parent of the current node.

// Identifies the descendants of the current node,
regardless of where they are in the document.
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Path expressions are composed by concatenating the above elements with
the / delimiter. Like directory paths, path expressions are interpreted relative
to the current node, unless they start with /, in which case they are considered
absolute paths that start with the root node of the XML document. When
an XPath path expression is interpreted, the node or nodes identified by it
become the current node, against which all nested relative path expressions are
interpreted. Absolute path expressions are always interpreted relative to the
root of the document. To help clarify how path expressions can be constructed,
consider the path expressions in Table 9-2 as they are applied to the XML
document from the first code example.

Table 9-2 Example Path Expressions Applied to the XML Document

PATH EXPRESSION INTERPRETATION

/current observation Matches current observation nodes that
are at the root of the document

location Matches location nodes that are anywhere
among the descendents of the current node

/current observation/latitude Matches latitude nodes that are the
children of current observation nodes
that are at the root of the document

location/../@ Matches attributes of the parent of
location nodes that are anywhere among
the descendents of the current node

/current observation//wind mph Matches wind mph nodes that are anywhere
among the descendents of current
observation nodes that are at the root of
the document

XPath provides expression predicates that can be used to identify a specific
node within the XML document based on its position or value. Predicates are
appended to expressions and contained within square brackets, [...], and
contain comparisons and functions that further constrain the node or nodes
that should match the expression. In addition, multiple path expressions
can be composed using the | character, which acts as a union operator over
multiple path expressions. Table 9-3 contains notional path expressions that
demonstrate some of the predicates and the optional syntax.

XPath provides many more functions and features for identifying specific
nodes and sets of nodes within an XML document. This section has only
started to scratch the surface and should be treated as a quick introduction
to open your eyes to the potential applications of this technology. For more
information on XPath, there are numerous excellent online references and
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tutorials. The official XML Path Language reference can be found online at
http://www.w3.org/TR/xpath.

Table 9-3 Example Path Expressions with Predicates and Unions

PATH EXPRESSION INTERPRETATION

nodeA[1]/nodeB Matches the nodeB node of the first nodeA node
(Note: this indexing scheme is ones-based.)

nodeA[last() - 1] Matches the second-to-last nodeA node

nodeA[@attributeC] Matches all nodeA nodes that have an attributeC
attribute

nodeA | nodeB Matches nodeA nodes or nodeB nodes

nodeA[valueD < 10] Matches nodeA nodes that have valueD nodes with
value less than 10 (Note: in your XSLT file, you must
escape the > and < characters using > and <.)

Applying XSLT to a Simple Example
Now that you’ve been introduced to XPath, one of the critical aspects of XSLT,
it’s time to return to the example XML and XSL files from the preceding
examples. The XSLT processor will begin the process with the document’s
root node. The first of the two templates will match the root node (because
the match path expression is simply the root node identifier /). The first
template creates the rdf:RDF element of the output document along with all
of the required namespace declarations and then calls apply-templates. This
instructs the processor to reapply all the templates to the children of the current
node, which is the root of the input document.

At this point, the processor will move onto the current observation node,
matching to it the second template. The second template contains a number
of XSLT elements that are each used to guide the construction of the output
document. It is listed here:

<xsl:template match="current observation">

<w:WeatherObservation>

<w:source rdf:resource="{credit URL}"/>

<w:time>

<xsl:value-of select="observation time rfc822"/>

</w:time>

<w:location><xsl:value-of select="location"/></w:location>

<w:latitude><xsl:value-of select="latitude"/></w:latitude>

<w:longitude><xsl:value-of select="longitude"/></w:longitude>
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<w:temperature f>

<xsl:value-of select="temp f "/>

</w:temperature f>

<w:windDirection rdf:resource="#{wind dir}"/>

<w:wind mph><xsl:value-of select="wind mph"/></w:wind mph>

<xsl:if test="wind gust mph != 'NA’">

<w:wind gust mph>

<xsl:value-of select="wind gust mph"/>

</w:wind gust mph>

</xsl:if>

<xsl:if test="weather">

<w:weatherDescription>

<xsl:value-of select="weather"/>

</w:weatherDescription>

</xsl:if>

<w:copyright rdf:resource="{copyright url}"/>

</w:WeatherObservation>

</xsl:template>

The first thing the template does is create the <w:WeatherObservation>

node in the output document. This creates a new individual of type
w:WeatherObservation. The template does not bother to assign a URI to the
new individual, so it remains an anonymous node in the RDF model.

C A U T I O N There is a significant reason why the w:WeatherObservation

individual is left anonymous and not assigned a consistent URI. The instance in the
generated RDF represents a snapshot in time of the current weather. Thus, the
results of the conversion process will change periodically as it is run. Using
consistent URIs to identify the instance could lead to a situation where multiple
distinct weather observations share the same URI. If the two instances are both
loaded into the same RDF model, there will be no way to tell which measurements
correspond to which weather observation. By leaving the instances anonymous,
they will be kept separate anytime they cohabitate an RDF model.

Among the contents of the template you will notice a number of xsl

elements. These elements instruct the XSLT processor how to generate the
output document based on the input. Take a look at the first few lines of the
template.

<w:source rdf:resource="{credit URL}"/>

<w:time>

<xsl:value-of select="observation time rfc822"/>

</w:time>
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These lines of the template instruct the XSLT processor to create new XML
nodes in the output document for w:source and w:time. The node w:source

is created with an attribute rdf:resource that has the value "{credit URL}".
Also, the node w:time is created with a child text node that has the value
<xsl:value-of select="observation time rfc822"/>. The first element
here to familiarize yourself with is <xsl:value-of>. This element tells the
processor to insert into the current position in the output document a new
node with a value that matches the node in the source document that matches
the select path expression. In this case, it will insert into the output document
a new node with the value of the observation time rfc822 node from the
source document.

The element <xsl:value-of> is used to output node values into the output
document. Attribute values are output using a slightly different syntax that
involves the curly braces: {...}. This is important to note because it is a
critical feature when you want to construct resource references in your output
RDF/XML. If more than one node matches the select, only the first match that
the parser comes across is processed. When more than one node is expected
and you want to output all of them, you should use a nested loop.

Once you are comfortable with the two elements that we just introduced,
most of the rest of the template is nothing unusual. It’s the same basic principle
applied to the other nodes in the source document that are being transformed
into nodes in the output document. The lines of the template are nothing new
until the two occurrences of the <xsl:if> element shown here:

<xsl:if test="wind gust mph != 'NA’">

<w:wind gust mph>

<xsl:value-of select="wind gust mph"/>

</w:wind gust mph>

</xsl:if>

<xsl:if test="weather">

<w:weatherDescription>

<xsl:value-of select="weather"/>

</w:weatherDescription>

</xsl:if>

The element <xsl:if> represents a conditional and allows you to perform
a test on a value, processing the child commands of the element only if the test
is passed. The test attribute identifies the condition of the element. The first
conditional has a test attribute with the value "wind gust mph != ‘NA’" and
passes only when the value of the wind gust mph node is not equal to ‘NA’.
The weather XML feed occasionally outputs a value of ‘NA’ when no data is
available for wind gust speed. The output RDF document should contain only
measurements, so the XSLT should omit any values that are ‘NA’. When the
test passes, the template generates a new node with the correct value in the
output document.
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The second conditional has a test attribute with the value "weather". This
test passes only when a weather node exists as a child of the current node. The
input weather XML file sometimes omits the weather node, so the XSLT must
test for its presence before generating anything in the output document based
on it. Otherwise, the output RDF document might contain an empty literal.
The test attribute can be any valid path expression or function that evaluates
to true or false. Through XPath, XSLT supports many mathematical, boolean,
as well as built-in functions that can be used as part of the test of a conditional
or path expression. For more information, consult the official XSLT language
specification at http://www.w3.org/TR/xslt.

The XSLT processor will continue the depth-first traversal of the XML tree,
processing each node and generating nodes in the output document until
no more nodes are unvisited. At that point, the process terminates and the
output document is complete. For this weather example, the output RDF/XML
document is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:w="http://www.semwebprogramming.net/2009/04/weather-ont#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns="http://www.semwebprogramming.net/weather#"

xml:base="http://www.semwebprogramming.net/weather">

<w:WeatherObservation>

<w:source rdf:resource="http://weather.gov/"/>

<w:time>Sun, 19 Oct 2008 14:54:00 -0400 EDT</w:time>

<w:location>

Baltimore-Washington International Airport, MD

</w:location>

<w:latitude>39.19</w:latitude>

<w:longitude>-76.67</w:longitude>

<w:temperature f>57</w:temperature f>

<w:windDirection rdf:resource="#Northeast"/>

<w:wind mph>10.35</w:wind mph>

<w:wind gust mph>22</w:wind gust mph>

<w:weatherDescription>Partly Cloudy</w:weatherDescription>

<w:copyright rdf:resource="http://weather.gov/disclaimer.html"/>

</w:WeatherObservation>

</rdf:RDF>

The result is an RDF/XML document that reflects the information contained
in the XML source document. This example is relatively straightforward
because the XML contains only a single weather observation node, and the
XML structure very closely resembles an object with a series of properties.
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Processing becomes more complicated when the source XML document
becomes more complicated, as you will see in the later example that uses
XSLT to convert XML data retrieved from Facebook’s RESTful API in order to
integrate it into FriendTracker. As a reference, Table 9-4 describes some of the
most useful XSLT elements.

Table 9-4 Other Useful XSLT Elements

ELEMENT DESCRIPTION

apply-templates Applies a template or all templates to the current
node.

call-template Applies a named template to the current node.

for-each Loops through each node in a node set.

if Applies a template if the condition is true.

choose, when, otherwise Used in conjunction to specify a multiple-option
conditional with a default value. Similar to a switch
block in Java.

text Writes text directly to the output document.

We haven’t touched on a number of aspects of XSLT so far in this section.
XSLT is a very powerful language, and a complete exploration of it is well
out of the scope of this book. Fear not, because as we already pointed
out, there are many excellent resources available on the Web that you
can use to learn more about this and other related technologies, including
http://www.w3.org/Style/XSL/.

Processing XML and XSLT Programmatically

So far, we’ve presented a full example of using XSLT to transform XML
information into RDF/XML. The next step is to put this knowledge into action
and build an application that combines an XML source document with an
XSLT to produce an output RDF document. The example in this subsection is a
simple client application that uses Java’s XSLT libraries to generate RDF/XML
from an input XML document and an already constructed XSLT document.
The application builds an RDF/XML file and then reads the file into a Jena
model in order to validate the syntax of the RDF and output it in Turtle
format.

The source code for the example application is listed here. It has been
abridged to make it shorter and easier to read. The exception handling has been
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simplified and some of the error checking has been removed. The full source
code is available in the programming examples that accompany this chapter.
The project for this programming example is called WeatherToRdfWithXslt.

public class WeatherToRdfWithXslt

{

public static void main(String[] args)

{

String xmlFile = args[0];

String xslFile = args[1];

String outputFile = args[2];

try

{

//create the output turtle file

FileOutputStream outputStream =

new FileOutputStream(outputFile);

//get the xml file input

URL xmlFileUrl = new URL(xmlFile);

InputStream xmlFileInputStream = xmlFileUrl.openStream();

//get the xsl file input

FileInputStream xslInputStream = new FileInputStream(xslFile);

//set up an output stream we can redirect to the jena model

ByteArrayOutputStream transformOutputStream =

new ByteArrayOutputStream();

//transform the xml document into rdf/xml

TransformerFactory factory = TransformerFactory.newInstance();

StreamSource xslSource = new StreamSource(xslInputStream);

StreamSource xmlSource = new StreamSource(xmlFileInputStream);

StreamResult outResult =

new StreamResult(transformOutputStream);

Transformer transformer = factory.newTransformer(xslSource);

transformer.transform(xmlSource, outResult);

transformOutputStream.close();

//build a jena model so we can serialize to Turtle

ByteArrayInputStream modelInputStream =

new ByteArrayInputStream(

transformOutputStream.toByteArray());

Model rdfModel = ModelFactory.createDefaultModel();

rdfModel.read(modelInputStream, null, "RDF/XML");

rdfModel.write(outputStream, "TURTLE");

outputStream.flush();
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System.out.println("Success.");

}catch(Exception e){}

}

}

Most of the first half of the application involves setting up the streams for
the input and output files. After they have been created, the XSLT transform
is applied by the following code:

TransformerFactory factory = TransformerFactory.newInstance();

StreamSource xslSource = new StreamSource(xslInputStream);

StreamSource xmlSource = new StreamSource(xmlFileInputStream);

StreamResult outResult =

new StreamResult(transformOutputStream);

Transformer transformer = factory.newTransformer(xslSource);

transformer.transform(xmlSource, outResult);

transformOutputStream.close();

The first step is to get a reference to a new TransformerFactory object and
create StreamSource and StreamResult wrapper objects for our input and
output streams. The next step is to create a new Transformer object that will
perform the XSL transformation. The Transformer instance must be created
with a reference to the source XSLT document. After that, simply call the
transform method on the Transformer instance, passing in the source XML
document’s StreamSource and the output XML document’s StreamResult. To
make sure the output XML document’s output stream is complete, the final
line in the code snippet closes the stream. At this point, the output stream
transformOutputStream contains the output XML document. If you were to
run this application with the weather input XML document and the XSLT
document, the RDF/XML document would be sitting in that output stream at
this point in the application.

The final step in this application is to validate the generated RDF by loading
it into a Jena model and then outputting it in Turtle format. This is no different
from the other examples that manipulate data using a Jena model. First the
model is created. Then the source RDF/XML data is loaded. Finally the Turtle
output file is generated. The code for each step is listed here:

//build a jena model so we can serialize to Turtle

ByteArrayInputStream

modelInputStream = new ByteArrayInputStream(

transformOutputStream.toByteArray());

Model rdfModel = ModelFactory.createDefaultModel();

rdfModel.read(modelInputStream, null, "RDF/XML");

rdfModel.write(outputStream, "TURTLE");

outputStream.flush();
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The only trick to this code is that the first step is to convert the OutputStream
from the XSL Transformation step into an InputStream that the Jena model
can read. Running this application against the input XML document and the
XSLT document produces the following RDF document in Turtle. Notice that
this is the same data as before, only serialized as Turtle instead of RDF/XML.

[] rdf:type w:WeatherObservation ;

w:copyright <http://weather.gov/disclaimer.html> ;

w:latitude "39.19" ;

w:longitude "-76.67" ;

w:location "Baltimore-Washington International Airport, MD" ;

w:source <http://weather.gov/> ;

w:temperature f "57" ;

w:time "Sun, 19 Oct 2008 14:54:00 -0400 EDT" ;

w:weatherDescription

"Partly Cloudy" ;

w:windDirection :Northeast ;

w:wind gust mph "22" ;

w:wind mph "10.35" .

The input parameters that were used to generate the output were
file:conf/KBWI.xml conf/weatherRdf.xslt output.ttl. The first parame-
ter is a relative file URL pointing at the local copy of the weather observation
XML file for Baltimore-Washington International Airport, MD. The second
parameter is a file location for the XSLT document that specifies the
transformation. Finally, the third parameter is the file location of the output
document. The first parameter can be substituted with the URL of the live
XML feed, which is http://www.weather.gov/xml/current obs/KBWI.xml.

A few details to note at this point are that the XSLT doesn’t transform all of
the data in the source XML file, and the output RDF doesn’t contain any data
types. Each of these details is easy to address by extending the XSLT to cover
more of the elements of the source XML document and by adding datatype
attributes to the nodes of the output RDF/XML document. Other than that,
notice that the output document contains a single w:WeatherObservation

object that has a series of properties, some with literal values and some with
resources as values.

Applying XSLT to the Facebook Data Source

The Facebook data source for FriendTracker uses XSLT to transform an XML
data feed that is acquired using Facebook’s web service. The client that
interfaces with the web service is contained in the FriendTracker code that
accompanies the book. The client does a lot of work to authenticate with
Facebook and establish a session for the user whose information is being
accessed. It’s not critical to the topics of the book but is available for reference
for the curious.
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The two pieces of the Facebook data source worth taking a look at are
the XML data feed that is retrieved from the web service and the XSLT that
transforms that data into RDF/XML that is then read into a Jena model and
ultimately output as Turtle. The same basic code is used in the Facebook
data source to process the XML and XSLT that was used in the Weather.gov
example.

Following is a small excerpt from an XML feed that contains the friends of
a Facebook user and all of their user information:

<?xml version="1.0" encoding="UTF-8"?>

<users getInfo response

xmlns="http://api.facebook.com/1.0/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://api.facebook.com/1.0/

http://api.facebook.com/1.0/facebook.xsd" list="true">

<user>

<uid>9999</uid>

<about me/>

<activities>doin cool stuff...</activities>

<affiliations list="true">

<affiliation>

<nid>999999</nid>

<name>College Park, MD</name>

<type>region</type>

<status/>

<year>2004</year>

</affiliation>

</affiliations>

<birthday>September 13, 1982</birthday>

<books>Brave New World, The Phantom Tollbooth, any Tolstoy</books>

<current location>

<city/>

<state>Maryland</state>

<country>United States</country>

</current location>

<first name>Ryan</first name>

<interests>Computers, cars, bikes</interests>

<locale>en US</locale>

<meeting for xsi:nil="true"/>

<movies>Fight Club, Casino Royale, all the Bourne Films</movies>

<music>Tool, Nine Inch Nails, George Winston</music>

<name>Ryan Blace</name>

<pic>http://example.org/picture1.jpg</pic>

<political/>

<relationship status>Married</relationship status>

<sex>male</sex>

<tv>Lost, Daily Show, Colbert Report, Formula 1 Racing</tv>

</user>

</users getInfo response>
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The XSLT that transforms this XML document can be found in the Facebook
project as well. It is located at ./conf/facebook.xsl. As we highlight different
aspects of the XML feed, the corresponding sections of the XSLT will be shown
and discussed. The first characteristic of the Facebook XML feed to notice is
that, unlike the Weather.gov XML feed, the Facebook XML document has a
base namespace. The namespace is highlighted in the following XML:

<?xml version="1.0" encoding="UTF-8"?>

<users getInfo response

xmlns="http://api.facebook.com/1.0/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://api.facebook.com/1.0/

http://api.facebook.com/1.0/facebook.xsd" list="true">

The reason why this is significant is that it means that the XSLT must
define that namespace and refer to it in the XPath expressions in order for the
expressions to match the source XML document. The following excerpts from
the Facebook XSL file will make this point clearer:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:fxml="http://api.facebook.com/1.0/"

xmlns:f="http://www.semwebprogramming.net/2009/04/fb-ont#"

xml:base="http://www.semwebprogramming.net/friends"

version="1.0">

...

<xsl:template match="/fxml:users getInfo response">

...

</xsl:template>

The namespace fxml is the same as the base namespace from the Facebook
XML feed. This namespace prefix is then used in the match attribute of the
xsl:template node. This is an important thing to remember and can easily
lead to difficult-to-diagnose problems in the XSLT file if it is omitted. In this
example, if the match attribute had a value of just "/users getInfo response",
the template would never match on anything.

Notice that the XML document has a number of ways that data can be
either present or missing. While some nodes are simply present or not present,
depending on whether they have a text value or not, there are other nodes
that are present but have no text value. Some nodes have an attribute xsi:nil

that has a value of true if there is no value. These situations are shown in the
following code snippet. <about me/> is a node without any text value, and
<meeting for xsi:nil="true"/> also has no text value but has an attribute
saying it’s nil.
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<uid>9999</uid>

<about me/>

<activities>doin cool stuff...</activities>

<meeting for xsi:nil="true"/>

Since you don’t want empty literals or resources in your output RDF file,
the XSLT needs to take these situations into consideration. The Weather.gov
XSLT merely did an existence check on nodes before generating output. The
Facebook XSLT can take that one step further and check to see that the text
value of the node is not empty.

<xsl:if test="fxml:about me != '’">

<f:about me><xsl:value-of select="fxml:about me"/></f:about me>

</xsl:if>

The Facebook XML file contains a list of user nodes. The XSLT handles this
condition by using an xsl:for-each element to loop over each of the nodes.
The uid node for each user is used to generate that user’s URI. This is so that
the user URIs are generated in a deterministic, consistent, and unique manner.
Also notice that within the list of users is a list of affiliations that users can
have with other places and organizations.

<affiliations list="true">

<affiliation>

<nid>999999</nid>

<name>College Park, MD</name>

<type>region</type>

<status/>

<year>2004</year>

</affiliation>

</affiliations>

These affiliations are an interesting case study in handling this kind of XML
data. If you look closely, you’ll see that the affiliation is a uniquely identifiable
instance that is conflated with some user-specific information. The nid node
identifies a unique identifier that refers to the object of the affiliation itself.
In this case, it’s the town of College Park, MD. But the status and year

nodes refer to the nature of the affiliation between the user and the affiliation
instance. Ideally, the information about the uniquely identifiable instance the
affiliation refers to should be separate from the information that describes the
nature of the affiliation.

Two options exist as to how to handle this situation. One option is to simply
translate the XML exactly as it is and leave it to a higher-level processor of
the data to figure out what it means. Another option is to handle it right now
in the transformation to RDF. The Facebook XSLT takes the former approach,
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leaving it to the consumer of the data to change it as needed. The result of
applying the XSLT to the example XML data presented earlier is the following
Turtle file:

@prefix f: <http://www.semwebprogramming.net/2009/04/fb-ont#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix fxml: <http://api.facebook.com/1.0/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix : <http://www.semwebprogramming.net/friends#>.

<http://www.facebook.com/friends#user9999>

rdf:type f:Friend ;

f:activities "doin cool stuff..." ;

f:birthday "September 13, 1982" ;

f:books "Brave New World, The Phantom Tollbooth, any Tolstoy" ;

f:hasAffiliation

[

rdf:type f:Affiliation , f:region ;

f:affiliationId :affiliation999999 ;

f:name "College Park, MD"

] ;

f:interests "Computers, cars, bikes" ;

f:location

[

rdf:type f:Location

] ;

f:movies "Fight Club, Casino Royale, all the Bourne Films" ;

f:music "Tool, Nine Inch Nails, George Winston" ;

f:name "Ryan Blace" ;

f:tv "Lost, Daily Show, Colbert Report, Formula 1 Racing" ;

f:uid "9999" .

Weighing the Benefits and the Costs of XSLT

This section illustrated that XSLT is a very powerful and flexible tool that
can be used to transform XML data into RDF/XML. One of the big benefits
to using XSLT is that all of the aspects of the transformation application that
are sensitive to changes in the underlying XML source data are external to
the application. The entire configuration that dictates how the transformation
takes place is contained in an external XSLT document. Another benefit to
using XSLT is that it provides a very natural method of converting XML
data to RDF/XML. That’s what XSLT is designed for—to transform one XML
document into another. In addition, as the example application shows, it takes
a minimal amount of straightforward code to programmatically perform these
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transformations. A final benefit is that there is a lot of tool support for working
with both XML and XSLT.

In summary, the benefits of using this approach to exposing XML as RDF
are as follows:

Transformation from XML to RDF configuration is external to the
application.

It provides a powerful language for processing and transforming XML.

RDF has an XML concrete syntax, making XSLT a natural fit.

The code required to process the XML and XSLT is short and simple.

There are drawbacks to XSLT as well. While it is a very powerful tool, that
power comes at quite a cost. To fully express the ins and outs of XSLT and
XPath would take an entire book. There’s quite a steep learning curve involved
in mastering the technologies. Fortunately, it’s relatively easy to get up and
running with simple examples. Despite the fact that the configuration for the
transformation application can be entirely externalized, it does require an
explicit configuration. In the common use case, XSLT is not a general-purpose
XML-to-RDF tool. It requires maintenance as the underlying XML source
changes, and it requires a developer to generate an XSLT document that
properly converts the XML to RDF/XML.

An additional drawback to the XSLT approach outlined in this section
is that it is not a streaming method of generating RDF/XML. The XSLT
processor utilizes a nonstreaming parser, and the application loads the
RDF/XML document into a Jena model for validation. Some technologies
available that are analogous to XSLT are streaming, such as the Streaming
Transformations for XML (STX) project, which can be found at http://stx.
sourceforge.net.

In summary, the drawbacks to this approach to exposing XML as RDF
include:

XSLT is quite complex and has a steep learning curve.

It requires configuration (XSLT file) that is manually generated.

Changes to the XML feed may require maintenance to XSLT
configuration.

XSLT alone does not provide a streaming transformation model.

XSLT is useful only for generating RDF in the RDF/XML syntax.

One final drawback is that XSLT is not ideal for generating RDF in syntaxes
other than RDF/XML. This is because XSLT is intended for transforming XML
documents. Even when run in the text output mode, it is intended that the
structure of the document from which the text is generated is XML.
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Exposing XML Using XML Bindings and Velocity
The previous section explored the use of XML transformation as a method
of generating RDF from XML data. This section takes a slightly different
approach, utilizing Java XML Bindings (JAXB) to unmarshal data from an
XML document into Java objects and then using the Velocity template engine
to generate an RDF/XML document based on that data. Once again, the
resulting RDF will be loaded into a Jena model for validation and to be
converted to the Turtle syntax. In order to maintain a consistent perspective
on the various technologies being utilized, this section reuses the same XML
weather feed from the Weather.gov website.

This technique to exposing XML as RDF is different from the XSLT approach
because it uses Java as an intermediate format for the data. This is significant
because once in Java, the data can be manipulated in almost endless ways
that it could not necessarily have been using XSLT. In addition, this section
introduces the idea of using a template engine to generate RDF based on Java
objects. Velocity is a general-purpose template engine that can be used to do
this. There are a number of other similar technologies, like the JavaServer
Pages Standard Tag Library (JSTL), that can be used in a similar fashion.

There are three phases to this process, illustrated in Figure 9-4. The first
involves generating the Java bindings for the XML data, based on its XML
schema. This involves analyzing the XML schema and generating a set of
Java classes to which data that adheres to that schema can be unmarshalled.
This process can be performed ahead of time and is similar to the process
of building the XSLT from the previous section. Essentially, the goal is to
build a framework that specifies how to move XML data into a different
representation. In this case, the representation is Java objects.

XML
Schema

XML
Document

RDFJAVA CLASSES JAVA
INSTANCES

STEP 1: Generate Bindings STEP 3: Generate 
RDF w/Velocity

STEP 2: Unmarshall
XML Data

Figure 9-4 The three phases of exposing XML using JAXB and Velocity
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The second phase involves unmarshalling the data from an XML input
document into Java objects using the classes that were generated in the first
phase. Once the objects are loaded and generated, they can be manipulated as
much or as little as is desired. The third and final phase involves invoking the
Velocity template engine with the set of Java objects generated in the second
phase and a Velocity template file that specifies how to generate the output
RDF document from the Java objects. The following subsections explore each
of the phases and the technologies in each along with the application that puts
them all together to convert XML data to RDF.

Generating Java Bindings for XML Data

The first step to using Java XML Bindings is to generate the bindings. Java XML
Bindings are a set of Java classes that are mapped to the elements contained in
an XML schema. A JAXB unmarshaller reads an XML file that conforms to a
schema or schemas and then generates instances of the Java classes that were
generated from the same schema. Generating the Java bindings is a relatively
easy step as long as no advanced configuration is necessary. The bindings
that are generated using the default parameters should be adequate for most
applications.

The example project that accompanies this section is named
WeatherToRdfWithJaxb and can be found with the other example
projects for Chapter 9. The example used the JAXB Reference Implementation
Project, which can be found at http://jaxb.dev.java.net. Full documen-
tation as well as downloads for the implementation can be found at that
website. The example project also includes the weather XML schema and
pregenerated Java bindings. For the sake of completeness, the example will be
presented as though the schema and bindings were not already downloaded
and generated.

The only requirement for generating Java bindings is to obtain the schema
for the XML data you want to generate bindings for. The XML schema can
usually be found by doing some research on the website that provided the
data or by resolving the URI listed in the namespace declaration in the source
XML data document. Following are the first few lines from the weather XML
document from the first code example in the chapter. The schema URI is
in bold.

<?xml version="1.0" encoding="ISO-8859-1"?>

<current observation version="1.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=

"http://www.weather.gov/xml/current obs/current observation.xsd">
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Fortunately, the URI is resolvable (the importance of resolvability!). Resolv-
ing the URI yields the full schema. The following is an excerpt from that schema.
The full schema can be found in the programming examples that accompany
Chapter 9, located in the project under conf/current observation.xsd.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="current observation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="credit" type="xsd:token" minOccurs="0"/>

<xsd:element name="credit URL" type="xsd:anyURI" minOccurs="0"/>

<xsd:element name="location" type="xsd:token" minOccurs="0"/>

<xsd:element name="station id" type="xsd:token" minOccurs="0"/>

<xsd:element name="latitude" type="xsd:string" minOccurs="0"/>

<xsd:element name="longitude" type="xsd:string" minOccurs="0"/>

<xsd:element name="elevation" type="xsd:integer" minOccurs="0"/>

<xsd:element name="observation time rfc822"

type="xsd:token" minOccurs="0"/>

<xsd:element name="weather" type="xsd:token" minOccurs="0"/>

<xsd:element name="temp f" type="xsd:decimal" minOccurs="0"/>

<xsd:element name="water temp f" type="xsd:decimal" minOccurs="0"/>

<xsd:element name="wind dir" type="xsd:string" minOccurs="0"/>

<xsd:element name="wind mph" type="xsd:decimal" minOccurs="0"/>

<xsd:element name="wind gust mph" type="xsd:decimal" minOccurs="0"/>

<xsd:element name="pressure mb" type="xsd:decimal" minOccurs="0"/>

<xsd:element name="copyright url" type="xsd:anyURI" minOccurs="0"/>

<xsd:element name="privacy policy url" type="xsd:anyURI"

minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="version" type="xsd:string" default="1.0"/>

</xsd:complexType>

</xsd:element>

</xsd:schema>

Understanding the schema isn’t actually all that important. That’s the benefit
of working with JAXB—you interact with the data as Java objects, not as XML.
The only entity that has to interact with the schema directly is the JAXB binding
generator. Invoking the generator is pretty straightforward. For the JAXB
Reference Project implementation, execute the com.sun.tools.xjc.XJCFacade
class (located in the jaxb-xjc.jar file) with the following parameters:

-p [target package name]

[XML schema]

-d [target directory for generated classes]
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To regenerate the bindings in the example project, use these parameters:

-p net.semwebprogramming.chapter9.weather

./conf/current observation.xsd

-d gen

The generator should run and output some status messages. Once it is
complete, it will have generated a new source tree under the gen directory
with the package net.semwebprogramming.chapter9. There should be three
new class files in that package: CurrentObservation.java, ImageType.java,
and ObjectFactory.java. Most of the interesting stuff is in the Current

Observation.java class. The class is a normal container class that has a
protected member variable for each of the XML nodes under the current

observation node. Most of the variables have annotations associated with
them that the unmarshaller will use to figure out how to unmarshal values
from the XML document into the Java objects. Now that the Java binding
classes are generated, it’s time to unmarshal some XML data into them.

Unmarshalling XML Data into Java
The next phase after the Java XML bindings are generated is to unmarshal XML
data into instances of the generated classes. Once the instances are created,
they can be used just like normal Java objects. This section introduces the
example application that uses JAXB to load the weather XML feed into the
generated Java classes and then sends them to Velocity to be serialized using
a Velocity template. The source code is listed here:

public class WeatherToRdfWithJaxb

{

public static void main(String[] args)

{

String xmlFile = args[0];

String vmFile = args[1];

String outputFile = args[2];

try

{

//get the xml file input

URL xmlFileUrl = new URL(xmlFile);

InputStream xmlFileInputStream = xmlFileUrl.openStream();

//get the vm file input

FileInputStream vmFileInput = new FileInputStream(vmFile);

//create the output file
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FileOutputStream outputStream =

new FileOutputStream(outputFile);

//unmarshal the information from xml

JAXBContext jaxbContext = JAXBContext.newInstance(

"net.semwebprogramming.chapter9.weather");

Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

CurrentObservation currentObservation =

(CurrentObservation)unmarshaller.unmarshal(

xmlFileInputStream);

//execute our velocity template

VelocityEngine engine = new VelocityEngine();

engine.init();

VelocityContext velocityContext = new VelocityContext();

velocityContext.put("observation", currentObservation);

//set up an output stream that we can redirect to the jena model

ByteArrayOutputStream vmOutputStream =

new ByteArrayOutputStream();

Writer resultsWriter = new OutputStreamWriter(vmOutputStream);

engine.evaluate(

velocityContext,

resultsWriter,

"weatherRdf",

new InputStreamReader(vmFileInput));

resultsWriter.close();

//build a jena model so we can serialize to Turtle

ByteArrayInputStream modelInputStream =

new ByteArrayInputStream(vmOutputStream.toByteArray());

Model rdfModel = ModelFactory.createDefaultModel();

rdfModel.read(modelInputStream, null, "RDF/XML");

rdfModel.write(outputStream, "TURTLE");

outputStream.flush();

System.out.println("Success.");

} catch (Exception e) {}

The application takes three parameters: an XML input document URL, an
input Velocity template file, and the desired output file. The first section of the
code gathers the input parameters for the application and sets up the streams
for the input and output documents. The code that performs the unmarshalling
process follows:

//unmarshal the information from xml

JAXBContext jaxbContext = JAXBContext.newInstance(

"net.semwebprogramming.chapter9.weather");
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Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();

CurrentObservation currentObservation =

(CurrentObservation)unmarshaller.unmarshal(

xmlFileInputStream);

First, a JAXBContext instance is created with the same namespace as the one
that was used when the Java bindings were generated. Next, the JAXBContext

instance is used to create a new instance of the Unmarshaller class. Finally,
the actual CurrentObservation instance is unmarshalled from the input XML
document by calling the unmarshal method on the instance of Unmarshaller,
with the input XML document stream as the input parameter. That’s all there
is to it. The instance of CurrentObservation can now be manipulated just like
any Java object, and it contains all of the data that was in the XML input file.
The next subsection presents the part of the application that uses Velocity to
generate an RDF/XML file based on the contents of the Java object that was
just unmarshalled.

Introducing the Velocity Template Engine

Now that the XML data is loaded into a Java object, it’s time to generate
RDF using Velocity. Velocity is an open-source Java-based Apache project
that provides a template language and processing engine that can be used to
embed Java object data in any text output file. Velocity has many of the same
features that XSLT does; however, unlike XSLT, it is not designed to generate
data of any specific format or representation, and it operates on Java objects
rather than XML documents.

Like many of the other technologies being discussed in this chapter, Velocity
has dozens of pages of documentation and deserves a chapter itself. But the
goal of this section is not to make you a master of Velocity; rather, it is to
introduce the tool and demonstrate some of the capabilities it has. With that in
mind, the examples will be kept quick and to the point. Picking up right where
the last section left off in the source code of the JAXB-to-Velocity application,
the following chunk of code is responsible for creating and executing the
Velocity engine against the instance of CurrentObservation and the input
Velocity template file:

//execute our velocity template

VelocityEngine engine = new VelocityEngine();

engine.init();

VelocityContext velocityContext = new VelocityContext();

velocityContext.put("observation", currentObservation);

//set up an output stream that we can redirect to the jena model

ByteArrayOutputStream vmOutputStream =

new ByteArrayOutputStream();
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Writer resultsWriter = new OutputStreamWriter(vmOutputStream);

engine.evaluate(

velocityContext,

resultsWriter,

"weatherRdf",

new InputStreamReader(vmFileInput));

resultsWriter.close();

The first two lines create and initialize an instance of VelocityEngine.
The initialization step is critical—nothing will work if it has not been called.
Immediately after the creation of the engine, an instance of VelocityContext is
created, and the instance of CurrentObservation is passed into the putmethod
along with the string identifier: observation. The instance of VelocityContext
is used to create a context of identifier/Java object pairs that will be made
accessible to the elements of the template file when it is being processed.

The next few lines of code create a new Writer that Velocity will use
to write the result document. After that, the real magic happens. The
evaluate method is called on the instance of VelocityEngine. The instance of
VelocityContext, the output writer, a string weatherRdf, and a new instance
of InputStreamReader that wraps the input Velocity template file are all passed
in as parameters to that method. This one big method call is the point at which
the engine merges the context with the template file and writes the results to
the writer. Recall that the context contains the objects that are to be used by the
template. The template contains directives that are used by the processor to
generate the output document based on the contents of the Java objects in the
context. By merging the two, the output document is formed and everything
is done.

Before you get too curious about what the output data looks like, first take
a look at the Velocity template file:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:w="http://www.semwebprogramming.net/2009/04/weather-ont#"

xml:base="http://www.semwebprogramming.net/weather#"

xmlns = "http://www.semwebprogramming.net/weather#" >

<w:WeatherObservation>

<w:source rdf:resource="$observation.CreditURL"/>

<w:time>$observation.ObservationTimeRfc822</w:time>

<w:location>$observation.Location</w:location>

<w:latitude>$observation.Latitude</w:latitude>

<w:longitude>$observation.Longitude</w:longitude>

<w:temperature f>$observation.TempF</w:temperature f>
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<w:windDirection rdf:resource="$observation.WindDir"/>

<w:wind mph>$observation.WindMph</w:wind mph>

#if ( $observation.WindGustMph == "NA" )

<w:wind gust mph>

$observation.WindGustMph

</w:wind gust mph>

#end

#if( $observation.Weather )

<w:weatherDescription>

$observation.Weather

</w:weatherDescription>

#end

<w:copyright rdf:resource="$observation.CopyrightUrl"/>

</w:WeatherObservation>

</rdf:RDF>

This template should look very familiar. It’s very similar to the file that
was used in the earlier example that used XSLT, only the syntax has changed
to the Velocity template language. In Velocity, any variable that was placed
in the VelocityContext instance and passed into the evaluate method can
be dereferenced from within the template using the $ character. Properties
(getters and setters) can be accessed using the script syntax that is used in
the previous template, or the full getter can be written out. The following
examples are equivalent:

$observation.CreditURL and $observation.getCreditURL()

$observation.Location and $observation.getLocation()

Other reference methods are allowed, such as $observation.creditURL,
and the engine will attempt to find a number of variations of the method to
try to find the property to which it corresponds. Any arbitrary method that is
accessible can be called directly using the full method name and parenthesis.
Even methods that alter the state of the objects in the VelocityContext can be
called with parameters. No special syntax is needed to dereference variable
values from within quotation marks or in the attributes of XML nodes.

Velocity’s template language supports a number of directives, including
variables, conditionals, and loops. In the example template, a #if conditional
is demonstrated. The first compares the value of $observation.WindGustMph
to the string "NA". The second checks for the existence of a value for
$observation.Weather. The #if directive supports the inclusion of a #else

clause as well. All block-based directives are terminated by a #end state-
ment. For more information on the details and features of the Velocity
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template language, you should refer to the Apache Velocity project page
at http://velocity.apache.org.

Generating RDF with Velocity

Returning to the task at hand, the final step in the example application is
to load the RDF/XML file that is generated by the Velocity template engine
into the Jena model. Once again, the Jena model will perform validation and
convert the RDF/XML file to Turtle. Running the application with the input
parameters "file:conf/KBWI.xml conf/weather-rdf.vm output.ttl" yields
the following output:

@prefix w: <http://www.semwebprogramming.net/2009/04/weather-ont#> .

@prefix : <http://www.semwebprogramming.net/weather#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

[] rdf:type w:WeatherObservation ;

w:copyright <http://weather.gov/disclaimer.html> ;

w:latitude "39.19" ;

w:location "Baltimore-Washington International Airport, MD" ;

w:longitude "-76.67" ;

w:source <http://weather.gov/> ;

w:temperature f "57" ;

w:time "Sun, 19 Oct 2008 14:54:00 -0400 EDT" ;

w:weatherDescription "\n Partly Cloudy\n " ;

w:windDirection <http://www.weather.gov/Northeast> ;

w:wind mph "10.35" .

This output file is almost exactly the same as what was produced in the
last example with XSLT. The only strange difference is the newline characters
in the w:weatherDescription value. We can remove those by modifying the
generated Java bindings to remove extra white space when the values are set
or retrieved.

Weighing the Benefits and the Costs

Using Java as an intermediate language for the XML-to-RDF translation process
has many benefits, including the increased flexibility it affords. There is much
more opportunity and ability to manipulate the data before it is converted to
RDF because more can be done with the data once it is accessible directly from
within a programming language like Java. The data can be integrated into any
number of tools or processed in any number of ways. Velocity has its own
advantages in that it is not as tied to XML as a destination format as XSLT
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is, and it has a much more concise and readable syntax than XSLT. Finally,
Velocity allows you to output any arbitrary text.

In summary, the benefits of bringing the data into Java objects and then
generating the output using a template engine include the following:

This approach is very powerful and flexible. In Java, you can do any-
thing to the data.

Using Java as an intermediate representation makes the approach much
more modular. Any number of methods for generating RDF can be
swapped in.

Velocity moves RDF generation logic from code and into configuration
files.

Velocity is very familiar to Java developers and to users of other similar
template languages such as JSTL.

Velocity enables you to generate any arbitrary text output or RDF serial-
ization, including Turtle.

The drawbacks to this approach are nothing new. This process is not
streaming because the binding process requires that all the objects from the
XML be loaded at once. This process relies on having compiled binding classes
that will have to be changed and redeployed if the underlying XML schema
ever changes. Admittedly, this should be a rare occurrence, but it could break
legacy code. Also, this approach is still not general purpose and requires a
developer to not only generate Java binding classes but also generate and
maintain a Velocity template file.

A concise view of these drawbacks includes the following:

Scalability is a concern because this process is not inherently streaming.

When using Java bindings, those bindings must change if the source
XML schema changes. This leads to recompilation and redeployment.

This approach requires the development and maintenance of Java bind-
ings and Velocity template files.

Exposing Relational Databases as RDF

Relational databases (RDBs) represent a massive source of data for the Semantic
Web. Most websites are populated by data stored in RDBs. In Tim Berners-Lee’s
own words: ‘‘One of the main driving forces for the Semantic Web has always
been the expression, on the Web, of the vast amount of relational database infor-
mation in a way that can be processed by machines’’ (from Relational Databases
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on the Semantic Web, http://www.w3.org/DesignIssues/RDB-RDF.html). For-
tunately, RDF and OWL are apt to model much of the information that can
be expressed in the Entity-Relational (ER) model that most RDBs are modeled
after. A number of tools, some of them listed in Table 9-5, have been devel-
oped to expose the data contained in RDBs as virtual RDF graphs that can be
navigated or queried as a SPARQL endpoint. This section will explore the use
of one of these tools, called D2RQ, to expose the relational database that backs
a web-based installation of the WordPress blog.

Table 9-5 Common Tools for Exposing an RDB as a Virtual RDF Graph

APPLICATION WEBSITE

D2RQ http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

SquirrelRDF http://jena.sourceforge.net/SquirrelRDF

OpenLink Virtuoso http://virtuoso.openlinksw.com/

Tools like D2RQ make it easier to expose relational database data to the
Semantic Web because they provide general-purpose mechanisms for mapping
the tables and columns of RDBs to the classes and properties of an ontology.
Most of the tools are designed to require minimal configuration, making it
easy to quickly expose the database as an RDF knowledgebase.

There may be occasions when you need to generate RDF directly from
the results of an SQL query or build an RDF-specific interface for a relational
database. Sometimes this can happen when the RDB schema is not well defined
or contains bad or inconsistent data that requires extra processing when it is
being processed and converted to RDF. While this section does not contain a
specific example handling that scenario, the technologies and techniques that
are used throughout this chapter can be applied in such a manner.

Exposing a WordPress Blog Using D2RQ
The example in this section uses D2RQ to wrap a WordPress blog’s relational
database in a Jena model. The model can be queried, navigated using the Jena
API, or wrapped in a Joseki SPARQL server. This is the same application that is
used to expose WordPress to FriendTracker. On the website accompanying this
book is an example MySQL database dump of a WordPress installation that
you can download and stand up to accompany the examples of this section.

There are two steps to exposing an RDB as RDF using D2RQ. The first step
involves generating a mapping file that specifies how the tables and columns
of the database map to specific classes and properties in an output ontology.
The tool doesn’t actually generate the output ontology, but it does implicitly
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create one because it defines a set of classes and properties in a consistent
namespace that will be used by the D2RQ processor when converting the RDB
data into RDF.

The second step involves establishing a D2RQ instance that is configured
with the mapping file generated in the first step and wrapping the instance in
a Jena model. Once this is done, you can use the model as if it were a normal
Jena RDF model. The following subsections walk through these steps using
WordPress as an example database.

Creating D2RQ Mappings for the WordPress Database

D2RQ comes with a tool that automatically generates mapping files for a
relational database by processing its schema. The tool can be invoked by
executing the Java class d2rq.generate mapping in the following manner:

d2rq.generate mapping

-u userName

-p password

-d driverClass

-o outputFile.n3

jdbcConnectUrl

As an example, consider the following command that generates mappings
for a MySQL-based WordPress installation:

d2rq.generate mapping

-u exampleUser

-p examplePassword

-d com.mysql.jdbc.Driver

-o outputFile.n3

jdbc:mysql://example.com:3306/exampleBlogDb

The only glitch in this command is that the MySQL JDBC driver throws
exceptions when it encounters a value of zero in a date column. To fix
this issue, you can tell the MySQL driver to convert zero dates to null by
appending ?zeroDateTimeBehavior=convertToNull to the end of the connect
string. When you run this command, D2RQ will connect to the database
specified and generate a default mapping file based on the schema it observes.
The whole process should take only a few moments.

The resulting mapping file is too big to show in its entirety, but it is useful
to take a look at a few sections of it. First, the namespace declarations:

@prefix map: <file:/.../mapping.n3#> .

@prefix db: <> .

@prefix vocab: <vocab/> .

@prefix d2rq: <http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#> .
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The map prefix is abbreviated so it fits on one line. In the mapping file, it will
be the file URL of the output filename. You can change this to whatever you
want. It is only used internally to D2RQ, but it will appear as a namespace in
RDF graphs that come out of D2RQ. The vocabprefix represents the namespace
of the output ontology. That is, all RDF coming out of D2RQ will be described
by classes and properties from the vocab prefix. This is worth changing to
something unique.

To get a feel for how the mappings work, take a look at the following excerpt
related to the table that stores blog posts:

# Table wp posts

map:wp posts a d2rq:ClassMap;

d2rq:dataStorage map:database;

d2rq:uriPattern "wp posts/@@wp posts.ID@@";

d2rq:class vocab:wp posts;

.

map:wp posts post author a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:wp posts;

d2rq:property vocab:wp posts post author;

d2rq:column "wp posts.post author";

d2rq:datatype xsd:long;

.

map:wp posts post date a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:wp posts;

d2rq:property vocab:wp posts post date;

d2rq:column "wp posts.post date";

d2rq:datatype xsd:dateTime;

d2rq:condition "wp posts.post date != '0000’";

.

map:wp posts post content a d2rq:PropertyBridge;

d2rq:belongsToClassMap map:wp posts;

d2rq:property vocab:wp posts post content;

d2rq:column "wp posts.post content";

C A U T I O N The generated URIs in the previous mapping file excerpt are based
on the names of the tables and columns in the database. The URIs will appear
slightly different if the database to which D2RQ is connected is different from the
one used to generate this example.

This excerpt contains one instance of the d2rq:ClassMap class and three
instances of the d2rq:PropertyBridge class. The d2rq:ClassMap instance with
the URI map:wp posts contains information that is used by D2RQ to map
a table from the database to a class in the output ontology. The instance
also contains a property value that is used to generate URIs for instances
that come out of that table. The d2rq:PropertyBridge instances each contain
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property values that are used by D2RQ to map columns from a specific table
to properties in the output ontology. If you look closely, you’ll also notice that
each property has datatype information that was extracted from the database
schema and even reflects the directive that was passed into the JDBC connect
URL telling it to treat zero dates as null (in this case, it instructs D2RQ to
ignore dates that are zero).

Wrapping the D2RQ Instance in a Jena Model
Once the mappings are generated, the next step is to wrap a model around
the D2RQ instance so that you can start accessing the database as RDF. D2RQ
provides hooks for both Sesame and Jena. To be consistent with the other
examples in this book, this example will wrap a Jena model around the D2RQ
exposed WordPress database. The following application creates an instance of
D2RQ with the mapping file that was just generated, wraps it in a Jena model,
and then issues a SPARQL construct query. This application is contained in the
WordPressToRdfWithD2RQ project. The results of the construct query are then
serialized to an output file. The mapping file contains all of the connection
configuration information, making the creation of the D2RQ model relatively
simple.

public class WordPressToRdfWithD2RQ

{

public static void main(String[] args)

{

String queryFile = args[0];

String queryName = args[1];

String mappingFile = args[2];

String outputFile = args[3];

String outputFormat = args[4];

try

{

//load our queries

QueryReader queryReader =

QueryReader.createQueryReader(queryFile);

String queryStr = queryReader.getQuery(queryName);

System.out.println(queryStr);

//create the d2rq model using the mapping file

Model d2rqModel = new ModelD2RQ(mappingFile);

//create the query

Query query = QueryFactory.create(queryStr);

QueryExecution qExec =

QueryExecutionFactory.create(query, d2rqModel);
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//execute the query

Model results = qExec.execConstruct();

//output the resulting graph

FileOutputStream outputStream =

new FileOutputStream(outputFile);

results.write(outputStream, outputFormat);

outputStream.close();

}catch (IOException e){}

}

}

As with the other examples in this chapter, we have abridged the code for
readability. Extraneous comments have been removed and exception handling
has been reduced. The first lines in the application read the query string from
a file that contains queries using a custom QueryReader class. The class parses
a text file with a set of queries in it and then provides a way to hash into the
set of queries using a name identifier. You can add queries to the query file to
change the behavior of the example. The class that is being presented in this
example assumes that the query that is loaded is a construct query. There is
also an example class that performs a select query instead.

Once the query has been loaded, the D2RQ instance is created and initialized.
The next step is to create a new Query instance and QueryExecution so that
the query can be executed against the D2RQ instance. As you may have
noticed, the D2RQ instance is in fact a Jena model itself. Once the instance of
QueryExecution is created, the only step that remains is to execute the query.
This is done using the execConstructmethod on the QueryExecution instance.
The result of this method is a new Jena model that contains the RDF graph
that is constructed by the query. Once the results are in the model, the model
can be serialized.

Querying the D2RQ Exposed WordPress Database

The last step in the sample application is to take a look at the construct query
that will be issued against the D2RQ virtual RDF graph. The following query
retrieves posts along with the user information for each post’s author.

PREFIX wp: <http://www.semwebprogramming.net/wordpress/ontology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT

{

?user rdf:type wp:wp users;



Chapter 9 ■ Combining Information 343

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

?postProp ?postVal.

}

WHERE

{

?user rdf:type wp:wp users;

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

wp:wp posts post type "post";

wp:wp posts post status "publish";

?postProp ?postVal.

}

Notice that the query constructs a graph that contains all statements about
both the users and the posts on the blog. The users and posts are connected by
the post author’s user id, as the bolded text indicates:

?user rdf:type wp:wp users;

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

wp:wp posts post type "post";

wp:wp posts post status "publish";

?postProp ?postVal.

This means that the results of this query will contain information only for
users who have authored a post. The query is designed to return all statements
about posts that have the correct type and status. This is achieved by the
combination of constraining the query using specific property values for post
type and status and through the portions of the query that have variables for
both the predicate and the value, as shown here:

?user rdf:type wp:wp users;

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

wp:wp posts post type "post";

wp:wp posts post status "publish";

?postProp ?postVal.

Issuing this query against the WordPress database using the example
application yields a result set containing RDF representation of blog posts and
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users in the WordPress database. The following is an excerpt of the constructed
RDF graph in Turtle:

<file:conf/mapping.n3#wp users/5>

rdf:type wp:wp users ;

rdfs:label "wp users #5" ;

wp:wp users ID "5"^^xsd:long ;

wp:wp users display name "andrew.perez.lopez" ;

wp:wp users user email "andrew.perez.lopez@example.org" ;

wp:wp users user login "andrew.perez.lopez" ;

wp:wp users user nicename "andrewperezlopez" ;

wp:wp users user pass

"$P$BRE7sfqcwezwImRKHJcJHktUE.edVy." ;

wp:wp users user registered

"2008-09-29 02:01:01.0"^^xsd:dateTime .

<file/conf/mapping.n3#wp posts/7>

rdf:type wp:wp posts ;

rdfs:label "wp posts #7" ;

wp:wp posts ID "7"^^xsd:long ;

wp:wp posts comment count "0"^^xsd:long ;

wp:wp posts comment status "closed" ;

wp:wp posts guid "http://semwebprogramming.org:8099/blog/?p=7" ;

wp:wp posts menu order "0"^^xsd:int ;

wp:wp posts ping status "open" ;

wp:wp posts post author "5"^^xsd:long ;

wp:wp posts post content

"So last night I checked in the initial..." ;

wp:wp posts post date gmt

"2008-10-06 00:41:50.0"^^xsd:dateTime ;

wp:wp posts post modified

"2008-10-05 20:41:50.0"^^xsd:dateTime ;

wp:wp posts post modified gmt

"2008-10-06 00:41:50.0"^^xsd:dateTime ;

wp:wp posts post name

"initial-implementation-of-the-upcoming-module" ;

wp:wp posts post parent "0"^^xsd:long ;

wp:wp posts post status

"publish" ;

wp:wp posts post title

"Initial Implementation of the Upcoming Module" ;

wp:wp posts post type

"post" .

Each post’s information, along with the post’s author, has been generated in
the output. Each individual generated has a URI that is based on a consistent
base and the primary key for the table from which the individual comes.
This is important because repeated accesses to the D2RQ virtual RDF graph
will result in consistent URIs, and the use of primary keys and table names
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guarantees that URIs will be unique within this instance of D2RQ. The result
set is a reflection of the database tables and columns, which contain a good
bit of application logic. This is a nice illustration of how the knowledge model
and the application model can be hard to distinguish.

Weighing the Benefits and the Costs of D2RQ

The big benefit to using D2RQ is that there is minimal configuration to expose
the RDB data as RDF. The mapping file is autogenerated and requires minimal
adjustment. It is one of the few methods of exposing RDF that actually provides
a way to dynamically issue SPARQL queries that convert only what is relevant
to the query into RDF. This is the only approach that fully establishes a virtual
RDF graph that is accessed and loaded lazily. Finally, the direct Jena and
Sesame support provides a very quick path to application integration.

In summary, the benefits of exposing an RDB as RDF using a tool like D2RQ
include the following:

Minimal configuration that is almost completely autogenerated

A SPARQL endpoint and direct integration with Jena and Sesame

Minimal learning curve because all you really need to know is SPARQL
and either Jena or Sesame

There are also a number of drawbacks to D2RQ. First, the generated RDF is
almost an exact reflection of the underlying database schema. This may not be a
good thing if the schema includes a lot of application- or performance-specific
elements. The next chapter will deal with some of the issues that arise when
you start to work with the knowledge model being generated through this
kind of exposure process. D2RQ uses a compile-time-generated configuration
file that may need to be changed if the RDB schema changes. This is mitigated
by the fact that a change to an RDB schema is usually considered a big deal,
and the required regeneration of the mapping file and associated queries is
likely acceptable. One of the biggest drawbacks to D2RQ and other tools in its
space is the simple lack of support and development. Many of the RDB-to-RDF
exposure projects have slowed or stalled as they try to make the transition from
government-funded research project to commercially viable product. While
the projects themselves may have slowed, healthy user communities still exist
and will hopefully keep the projects alive.

The drawbacks can be summarized as follows:

Generated RDF is almost an exact reflection of database structure, which
may contain application-specific and performance-specific information.

These tools generally require a close awareness of underlying RDB
schema to build useful queries.
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Changes to RDB schema may require regeneration of mappings and
changes to queries.

The level of activity surrounding D2RQ and similar projects is low.

Exposing Other Sources of Data

So far, this chapter has covered a couple of techniques for exposing XML
data into the Semantic Web and exposing a relational database as a virtual
RDF graph. This section introduces a few other more general methods of
exposing data as RDF. The first example uses a simple streaming Turtle
RDF generator that builds an RDF representation of a Jabber Java client data
source for FriendTracker. The second example uses Java Reflection as a way
to expose objects generated from the Upcoming.org XML web service as RDF
in a general-purpose manner.

Exposing Jabber with a Custom Streaming RDF Writer
The purpose of this example is to demonstrate the use of a streaming writer
to generate RDF in the Turtle syntax. The reason this example is important is
that it represents a useful tool to have at your disposal when working with
large volumes of data, and other more general-purpose approaches can’t scale
adequately to the task. The example project for this section is the same code
that is used to expose the Jabber Java client data source for FriendTracker as
RDF. The project is contained in the code that accompanies this chapter and
is called JabberToRdf. The examples run in this section are executed with one
of the authors’ Google Mail accounts. The server name is google.com, and the
username is the Google Mail email address.

There are two main parts of this example. First is a streaming Turtle
writer class, TurtleWriter. This class provides methods for creating new
individuals and then appending property values to them. The writer itself is
relatively straightforward and doesn’t have a lot of advanced features, but it
demonstrates how a very simple concept can be used to expose a large amount
of data in a scalable fashion. The second part of the example is the main
application that uses the Jabber client to generate a Java representation of a
user’s contact list and his online status information and then iterate through
that model, using the Turtle writer to generate RDF that reflects the properties
and values of the data. Most of the code that performs this task is contained
in a method of the JabberToRdf class called retrieveFriends. That method
is shown here, with reduced exception handling and other omissions to make
the code easier to read:
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public InputStream retrieveFriends(String server, String username,

String password)

{

InputStream toReturn = null;

XMPPConnection connection = null;

try

{

//create a connection

connection = new XMPPConnection(server);

//connect and log in

connection.connect();

connection.login(username, password);

//get the contact list

Roster roster = connection.getRoster();

roster.setSubscriptionMode(Roster.SubscriptionMode.accept all);

Collection<RosterEntry> entries = roster.getEntries();

ByteArrayOutputStream baos = new ByteArrayOutputStream();

//create a turtle writer

TurtleWriter writer = TurtleWriter.createTurtleWriter(baos);

//add the prefixes for this document

writer.addPrefix("j", "http://www.jabber.org/ontology#");

writer.addPrefix("", "http://www.jabber.org/data#");

for(RosterEntry entry : entries)

{

//open the individual

writer.openIndividual("", entry.getUser(), "j", "Contact");

//write their name if they have one

if(null != entry.getName())

{

writer.addLiteral(

"rdfs", "label", entry.getName(), "xsd:string");

writer.addLiteral(

"j", "name", entry.getName(), "xsd:string");

}

//write their presence state

Presence p = roster.getPresence(entry.getUser());

String type = getType(p.getType());

String mode = getMode(p.getMode());

String status = p.getStatus();

if(null != type)

{
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writer.addReference("j", "presenceType", "j", type);

}

if(null != mode)

{

writer.addReference("j", "presenceMode", "j", mode);

}

if(null != status)

{

writer.addLiteral("j", "status", status, "xsd:string");

}

writer.closeIndividual();

}

writer.close();

toReturn = new ByteArrayInputStream(baos.toByteArray());

}catch (XMPPException e){}

return toReturn;

}

The goal of this example is to demonstrate the use of the streaming writer,
not necessarily to focus on XMPP or Jabber. With that said, the first dozen
or so lines of the method establish the connection with the Jabber server
and retrieve the user’s contact list. The actual contact list is represented by
the instance of Roster, and a snapshot of the contact list at a point in time
can be generated by calling Roster.getEntries(). Jabber uses asynchronous
message passing to establish the status of contacts on the contact list, so each
time getEntries() is called, the list may be different. The example application
ignores the asynchronous model and generates an RDF representation of the
client’s contact list (roster) at a single point in time. The unabridged source
code corresponding to the code above contains a thread sleep operation that
gives the client five seconds to gather status information for the contacts in the
roster. Using a thread sleep in this kind of circumstance is an ugly solution
and quite a hack. In any real application, a refresh period would be specified,
and the data would be refreshed each time the period expired. Since it’s not
critical to our point, we’ll leave the sleep in there for now.

Once the roster snapshot is generated, the TurtleWriter is created, and then
each entry in the roster is processed and written. The code that creates the
TurtleWriter is as follows:

ByteArrayOutputStream baos = new ByteArrayOutputStream();

//create a turtle writer

TurtleWriter writer = TurtleWriter.createTurtleWriter(baos);

In this particular application, the TurtleWriter is not being used in a
truly streaming sense because all of the output is being directed into a
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ByteArrayOutputStream. However, it could easily be tweaked into a streaming
example by using a FileOutputStream instead. The first step in writing the
output document is to establish the namespaces for the data that will be
written. This includes the namespaces for both instances and for ontology
elements that will be referenced.

//add the prefixes for this document

writer.addPrefix("j",

"http://www.semwebprogramming.net/2009/04/jabber-ont#");

writer.addPrefix("",

"http://www.semwebprogramming.net/jabber#");

This code establishes a prefix j that represents the ontology namespace and
a blank prefix that represents the base namespace of the document. So far, the
data that has been written to the output stream is basically the header for the
Turtle file, including the default namespace prefixes and the ones that were
added in the previous code snippet:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix j: <http://www.semwebprogramming.net/2009/04/jabber-ont#> .

@prefix : <http://www.semwebprogramming.net/jabber#> .

Once the writer is initialized and the namespaces are established, it is time
to iterate over each entry in the roster and write out a representative individual
with types and property values. For each individual, the first step is to declare
the individual as a member of a class. The code and the corresponding output
that is generated are shown here:

//open the individual

writer.openIndividual("", entry.getUser(), "j", "Contact");

[output.ttl]

<http://www.jabber.org/data#lernerj@gmail.com>

a <http://www.semwebprogramming.net/2009/04/jabber-ont#Contact> ;

The TurtleWriter class maintains a buffer of the last property value that
was added to an open individual and writes only that last property value
when there is a new property value or the individual is closed. It does this so
that it can correctly determine whether it should add a terminating semicolon
or period to the end of the line of Turtle, based on whether more statements
are being added about a particular individual. The parameters to open an
individual are the namespace prefix of the individual’s base URI namespace,
the URI fragment to append to that namespace to generate the individual’s
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URI, the prefix of the class of which the individual is a member, and finally
the class itself. The individual’s URI is generated based on the results of
entry.getUser(). This is because that method returns the unique identifier for
that entry. Notice that the individual URI doesn’t actually use the namespace
prefix when it generates the output. This is a result of the fact that the user’s
unique identifier is an email address and contains an @ symbol. This character
is not allowed in abbreviated URIs in Turtle. These are the kinds of issues you
will have to consider when you build or reuse an RDF writer of this type.

The rest of the loop writes the other properties of this individual, including
name, presence type, presence mode, and status. Following is a very com-
pressed listing of the rest of the properties that are output for the current entry
in the roster:

writer.addLiteral("rdfs", "label", entry.getName(), "xsd:string");

writer.addLiteral("j", "name", entry.getName(), "xsd:string");

writer.addReference("j", "presenceType", "j", type);

writer.addReference("j", "presenceMode", "j", mode);

writer.addLiteral("j", "status", status, "xsd:string");

The entry.getName value is output as a literal value for both the name

property and the annotation property rdfs:label. Notice that all literals are
written with data types. Presence type and mode are each written as resource
values for object properties, while status is written as a literal value. The
reason for this is that the presence type and mode take their values from fixed
enumerations. These values have meaning and semantics associated with
them. Treating them as literals removes any ability to capture that meaning in
an ontology. Status is a free-form text field. As such, it wouldn’t be as useful
to treat it as an object property and try to assign meaning to its potential
values. Following is the Turtle that is generated after a complete iteration and
processing of a single entry:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix j: <http://www.jabber.org/ontology#> .

@prefix : <http://www.jabber.org/data#> .

<http://www.semwebprogramming.net/jabber#zcrawford@zeuscrawford.net >

a <http://www.semwebprogramming.net/2009/04/jabber-ont#Contact> ;

rdfs:label "Zeus Crawford"^^xsd:string ;

j:name "Zeus Crawford"^^xsd:string ;

j:presenceType j:Available> ;

j:status "Chillin..."^^xsd:string .

This process is repeated for each entry in the roster, and the end result
is an RDF graph serialized to Turtle that represents the current state of the
user’s contact list. Depending on how this data is used, you may want to
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append some information that captures temporal context and identifies this as
a snapshot in time.

This example is probably the most flexible approach that we have covered
so far in this chapter. You can reuse a custom RDF writer like this to expose any
data source that can be worked with in Java (or whatever language the writer
is written in). This approach could easily be swapped with Velocity in the
previous XML and JAXB example to generate the RDF output. In addition, the
Turtle writer is entirely streaming. It does not maintain a significant amount of
state information, and its performance should remain constant as data volume
increases.

In summary, the benefits include:

It is probably the most flexible and customizable approach to exposing
RDF.

Very modular, it can be used with many of the other techniques.

The writer itself is purely streaming and can handle large volumes of
data.

While the writer itself is a reusable software component, the code that
uses it to generate the RDF output is not. This is the weakness of this
approach. It is not a holistic, general-purpose method for exposing data as
RDF. The data that is produced is determined in code, and any changes will
have to be made at compile time, rather than runtime. The TurtleWriter

class is a streaming Turtle writer; it doesn’t maintain a model. This is
good because it reduces the resources required to generate large amounts
of data. However, there are drawbacks as well. Without a centralized
model, not as much can be done with the data as it is being gener-
ated. Without any stored state reflecting what has already been written to
the output stream, only the most limited reasoning can be applied, and
duplicate results cannot be identified and removed. Adding any of these
features increases both the overhead and the resource requirements of the
writer.

To summarize, the drawbacks include:

This approach is the most custom, and therefore it will require more
work and potential recompilation if the source data changes.

The writer is very simple. It performs no optimizations and
does no data cleaning (escaping of illegal characters). These
tasks, while straightforward, introduce additional overhead
and may change the scaling characteristics of the writer.

The writer does not support anonymous nodes as it is cur-
rently written. However, it could be extended to do so.

Streaming writers gain performance at the cost of power and
expressivity.
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Exposing Java Objects Using Reflection
The purpose of this next example is to demonstrate the use of a fully generalized
method of exposing any Java data using the Java Reflection API. The Reflection
API allows programmers to take any arbitrary object and figure out what
classes it is an instance of and then get information about those classes,
including property names, modifiers, and attributes, as well as to make calls
to those methods without requiring explicit casting.

The example project can be found, like all of the others, in the program-
ming examples that accompany this chapter. The specific project for this
example is called JavaObjectsToRdf. The project contains a class called
JavaObjectRdfSerializer whose responsibility it is to construct an RDF
graph from a collection of Java objects. The class uses the Java Reflection API
to generate type information and property and value information for each
object. As it processes each object, it adds RDF statements to a Jena model.
Once the process is complete, the model is serialized to an output stream in
the appropriate serialization syntax.

The JavaObjectRdfSerializer is created and initialized with URIs for the
namespace of created individuals and the ontology namespace for gener-
ated classes and properties, a namespace identifying which Java package
to limit the processing to (this prevents the processor from serializing
unwanted referenced objects), and the syntax for the serialization. The class
has a single public method, void serialize(Collection<Object> objects,

OutputStream outputStream). This method takes each method and serializes
it by calling the following method:

private Individual processObject(Object o)

{

Individual individual = null;

/*

* Determine if we should process this object

* We don’t process it if one of the following is true:

* 1) We’ve already processed it

* 2) It’s not in our target package

*/

boolean shouldProcess = true;

shouldProcess =

null != o

&& ! processedObjects.containsKey(o)

&& o.getClass().getPackage().getName().startsWith( package);

//now process it if we should

if(shouldProcess)

{

//get the uri from the hashcode
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String resourceUri = String.format("%1$s%2$s", baseUri,

o.hashCode());

String classUri = String.format("%1$s%2$s", ontUri, o.getClass

().getSimpleName());

OntClass c = model.createClass(classUri);

individual = c.createIndividual(resourceUri);

processedObjects.put(o, individual);

for(Method m : o.getClass().getMethods())

{

try

{

processMethod(o, individual, m);

}catch (Exception e){}

}

}

else if( processedObjects.containsKey(o))

{

individual = processedObjects.get(o);

}

return individual;

}

The method starts by determining whether the object that is passed in
should even be processed. It does this by checking to see whether the object’s
class’s package is within the scope of the packages that are being processed
and by maintaining a set of objects that have already been processed. This is
done to prevent infinite loops when two objects have references to each other.
If the object has already been processed, the method returns a reference to the
individual that was generated. After the method decides that it is processing
the object, it proceeds to create the URI for the new individual as well as a URI
for the class of which the individual is a member.

//get the uri from the hashcode

String resourceUri =

String.format("%1$s%2$s", baseUri, o.hashCode());

String classUri = String.format(

"%1$s%2$s", ontUri, o.getClass().getSimpleName());

The URI for the individual is derived from its hash code. An assumption is
made in this code that objects will have consistent and noncolliding hash codes.
In some cases this is not a safe assumption, but it works for demonstration
purposes. The class URI is derived from the simple name (without the full
package) of the object’s Java class. After the two URIs are created, an OntClass

is created in the Jena model, and then a new individual is created as an instance
of the class. The next step after creating the new individual is to create all of
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its property values. This is done by calling the method processMethod(...),
shown here:

private void processMethod(Object o, Individual individual, Method m)

{

/*

* We don’t process it if one of the following is true:

* 1) It’s not a getter

* 2) It has more than 0 parameters

* 3) It isn’t public

*/

boolean shouldProcess = true;

shouldProcess =

null != m

&& m.getName().startsWith("get")

&& m.getParameterTypes().length == 0

&& Modifier.isPublic(m.getModifiers());

if(shouldProcess)

{

String propertyName = m.getName().substring(3);

Property p = model.createProperty(

String.format("%1$s%2$s", ontUri, propertyName));

Object value = m.invoke(o);

if(null == value)

{

//we just want to skip these

}

else if(m.getReturnType().isPrimitive() || isBoxedPrimitive(value))

{

addBoxedPrimitiveValue(individual, p, value);

}

' else

{

//add a resource

Individual newIndividual = processObject(value);

if(null != newIndividual)

{

individual.addProperty(p, newIndividual);

}

}

}

}

The first step in this method is to determine whether to even bother
processing the method. The criteria for a method to be processed are as
follows:

The method must be a getter—it must start with get.
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The method must take no parameters.

The method must be public.

If each of these criteria is met, the method will be processed. First, a new
property is created in the Jena model that is based on the name of the method
(everything but the get part). Once the property is created, the method is
invoked on the object and the value is returned:

String propertyName = m.getName().substring(3);

Property p = model.createProperty(

String.format("%1$s%2$s", ontUri, propertyName));

Object value = m.invoke(o);

At this point, the only trick is to figure out how to interpret the value that
is returned by the method. There are a couple of options. The application can
treat everything as a literal value and just call the toString(...) method on
each value to get the literal value. This is not a very good solution, however,
because connections between resources will be lost and the RDF generator will
generate pretty uninteresting RDF. The approach that this application takes
is to try to interpret as best as it can exactly what the value is. There are two
cases: Either the value is a primitive or it is an object. The two cases are really
three cases, but we handle both boxed primitives and normal primitives the
same way.

When the value is an object, the application recursively calls the
processObject(...) method and then adds an object property connecting the
currently being processed individual to the new one. When the value is a prim-
itive (boxed or not), another method called addBoxedPrimitiveValue(...) is
called. This method determines exactly what kind of primitive it is and adds
it to the Jena model appropriately. Following is an excerpt from the method:

if(value instanceof String)

{

i.addLiteral(p, value);

}

else if(value instanceof Integer)

{

i.addLiteral(p, ((Integer)value).longValue());

}

else if(value instanceof Float)

{

i.addLiteral(p, ((Float)value).floatValue());

}

else if(value instanceof Double)

{

i.addLiteral(p, ((Double)value).doubleValue());

}
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Applying the RDF Generator to the Weather.gov XML Feed

The following Turtle RDF file is an excerpt from the result of applying this
technique to the same Weather.gov XML data feed from the earlier XML
examples. The feed is once again loaded using JAXB, and the resulting objects
are then fed into the JavaObjectRdfSerializer:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix dOnt: <http://www.semwebprogramming.net/2009/04/weather-ont#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

dOnt:ImageType

rdf:type owl:Class .

<http://www.semwebprogramming.net/weather#31384576>

rdf:type dOnt:ImageType ;

dOnt:Link "http://weather.gov"^^xsd:string ;

dOnt:Title "NOAA’s National Weather Service"^^xsd:string ;

dOnt:Url "http://weather.gov/images/xml logo.gif"^^xsd:string .

dOnt:CurrentObservation

rdf:type owl:Class .

<http://www.semwebprogramming.net/weather#32486590>

rdf:type dOnt:CurrentObservation ;

dOnt:CopyrightUrl "http://weather.gov/disclaimer.html"^^xsd:string ;

dOnt:Credit "NOAA’s National Weather Service"^^xsd:string ;

dOnt:CreditURL "http://weather.gov/"^^xsd:string ;

dOnt:DewpointC "-3.0"^^xsd:double ;

dOnt:DewpointF "27.0"^^xsd:double ;

dOnt:DewpointString "27 F (-3 C)"^^xsd:string ;

dOnt:DisclaimerUrl "http://weather.gov/disclaimer.html"^^xsd:string ;

dOnt:HeatIndexString "NA"^^xsd:string ;

dOnt:IconUrlBase

"http://weather.gov/weather/images/fcicons/"^^xsd:string ;

dOnt:IconUrlName "sct.jpg"^^xsd:string ;

dOnt:Image <http://www.semwebprogramming.net/weather#31384576> ;

dOnt:Latitude "39.19"^^xsd:string ;

dOnt:Location

"Baltimore-Washington International Airport, MD"^^xsd:string ;

dOnt:Longitude "-76.67"^^xsd:string ;

dOnt:ObUrl

"http://www.nws.noaa.gov/data/METAR/KBWI.1.txt"^^xsd:string ;

dOnt:ObservationTime

"Last Updated on Oct 19, 2:54 pm EDT"^^xsd:string ;

dOnt:ObservationTimeRfc822

"Sun, 19 Oct 2008 14:54:00 -0400 EDT"^^xsd:string ;

dOnt:PressureIn "30.33"^^xsd:double ;



Chapter 9 ■ Combining Information 357

dOnt:PressureMb "1027.0"^^xsd:double ;

dOnt:PressureString "30.33\" (1027.0 mb)"^^xsd:string ;

dOnt:PrivacyPolicyUrl

"http://weather.gov/notice.html"^^xsd:string ;

dOnt:RelativeHumidity "32"^^xsd:long ;

dOnt:StationId "KBWI"^^xsd:string ;

dOnt:SuggestedPickup "15 minutes after the hour"^^xsd:string ;

dOnt:SuggestedPickupPeriod "60"^^xsd:long ;

dOnt:TempC "14.0"^^xsd:double ;

dOnt:TempF "57.0"^^xsd:double ;

dOnt:TemperatureString "57 F (14 C)"^^xsd:string ;

dOnt:TwoDayHistoryUrl

"http://www.weather.gov/data/obhistory/KBWI.html"^^xsd:string ;

dOnt:Version "1.0"^^xsd:string ;

dOnt:VisibilityMi "10.0"^^xsd:double ;

dOnt:Weather "Partly Cloudy"^^xsd:string ;

dOnt:WindDegrees "50"^^xsd:long ;

dOnt:WindDir "Northeast"^^xsd:string ;

dOnt:WindGustMph "22.0"^^xsd:double ;

dOnt:WindMph "10.35"^^xsd:double ;

dOnt:WindString

"From the Northeast at 10 Gusting to 22 MPH"^^xsd:string ;

dOnt:WindchillC "13"^^xsd:long ;

dOnt:WindchillF "55"^^xsd:long ;

dOnt:WindchillString "55 F (13 C)"^^xsd:string .

A few observations are worth pointing out with this result. All of the
properties are exposed without explicitly being handled. This is different
from the other approaches to exposing the Weather.gov data feed. Also, full
datatype information is there for all of the values. The other approaches could
also have included this; however, this time the application figured it out
without requiring any manual configuration. Notice that there is more than
one instance in the output and that they are connected by an object property
(highlighted in the example in bold).

In summary, the benefits of the technique include:

The technique is fully generalized and requires no configuration.

Datatype information is intact without any extra configuration.

It provides a very quick way to get Java data into RDF.

It is very modular because this technique can process any data that can
be loaded into Java objects.

There are a number of drawbacks to this approach. The processor in this
example is very primitive and is built on some assumptions about the structure
of the data it is processing. However, with some work this technique could
become a very robust solution. Just as one example, the Java Reflection API
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provides access to class and property annotations that could be used by this
system to determine which classes and properties should be exposed and
how. Despite those weaknesses, the example should illustrate how powerful
a method like this can be.

The drawbacks include:

The technique is so generalized that little customization can
be performed without introducing it at the Java level.

This implementation is very simplistic and is missing a lot of
features, like using annotations to configure the output behavior.

Applying the RDF Generator to the Upcoming.org XML Feed

As a final example and an introduction to one of the other FriendTracker data
sources, consider the Upcoming.org data source (the project can be found
with the other FriendTracker projects). Upcoming.org provides an XML web
service, just like Facebook. In this application, a Document Object Model is
used to parse the XML feed and load it into Java objects. DOM is just another
method of parsing XML, like using Java XML bindings. It wasn’t covered in
the earlier XML section, but it is another useful tool to be familiar with when
working with XML. The DOM builds an in-memory representation of the XML
document that can be traversed and manipulated. An in-depth discussion of
the DOM is out of scope for this chapter, but example code is contained in the
Upcoming.org project.

Using DOM, the Upcoming.org data source builds a collection of Java objects
representing events. These objects are then processed using the same Java
Reflection API–based RDF generator that we just applied to the Weather.gov
XML feed. Consider the following RDF that was generated by querying the
data source for events near Washington, D.C.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix dOnt: <http://www.upcoming.org/ontology#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

<http://www.upcoming.org/events#24267421>

rdf:type dOnt:VEvent ;

dOnt:CategoryId "10"^^xsd:string ;

dOnt:DatePosted "2008-10-16 08:19:20"^^xsd:string ;

dOnt:Description

"Morton’s Steakhouse Hosts Argentinean Wine Dinner"^^xsd:string ;

dOnt:EndTime "21:00:00"^^xsd:string ;

dOnt:GeocodingAmbiguous "false"^^xsd:boolean ;

dOnt:GeocodingPrecision "address"^^xsd:string ;
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dOnt:Id "1236354"^^xsd:string ;

dOnt:Latitude "38.8604"^^xsd:double ;

dOnt:Longitude "-77.0497"^^xsd:double ;

dOnt:MetroId "171"^^xsd:string ;

dOnt:Name

"Morton’s The Steakhouse: Argentinean Wine Dinner"^^xsd:string ;

dOnt:StartDate "2008-11-07T05:00:00Z"^^xsd:dateTime ;

dOnt:StartTime "18:30:00"^^xsd:string ;

dOnt:TicketFree "0"^^xsd:string ;

dOnt:TicketPrice

"$130 per person (inclusive of tax and gratuity)"^^xsd:string ;

dOnt:TicketUrl "http://www.mortons.com"^^xsd:string ;

dOnt:UserId "204308"^^xsd:string ;

dOnt:VenueAddress "1631 Crystal Square Arcade"^^xsd:string ;

dOnt:VenueCity "Arlington, VA"^^xsd:string ;

dOnt:VenueCountryCode "us"^^xsd:string ;

dOnt:VenueCountryId "1"^^xsd:string ;

dOnt:VenueCountryName "United States"^^xsd:string ;

dOnt:VenueId "39086"^^xsd:string ;

dOnt:VenueName "Morton’s The Steakhouse (Crystal City)"^^xsd:string ;

dOnt:VenueStateCode "dc"^^xsd:string ;

dOnt:VenueStateId "9"^^xsd:string ;

dOnt:VenueStateName "District of Columbia"^^xsd:string ;

dOnt:VenueZip "22202"^^xsd:string .

The purpose of this example is not to cover DOM but rather to introduce
another FriendTracker data source and to illustrate the point that the technolo-
gies of this chapter can be mixed and matched to expose data as RDF in any
number of ways.

Summary

This chapter has presented a multitude of different technologies and techniques
that you can use to expose data from all kinds of formats and representations
to the Semantic Web as RDF with some primitive ontology description. No
formal ontology was produced for any of the data sources, but classes and
properties were generated in the resulting RDF. This means that a data source
ontology can be built on top of that exposed data to add semantics to the RDF
that was produced. This chapter is all about pulling all of these disparate data
sources together into a common data model: RDF. The next chapter will deal
with managing how the semantics of the various data sources combine and
integrate.

Although this chapter dealt with many different sources of data, there are
too many different sources to cover them all. Some of the data you will
want to expose may already be in a representation that is very close to RDF.
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A number of formats are similar to RDF or have semantic annotations. RDFa
and Microformats are two such technologies. The trick to pulling these formats
into your Semantic Web application is to process them using an appropriate
parser. In the case of RDFa, the data is already RDF; it’s just a matter of getting
it into a syntax you can use or into a model you can access. Microformats are
slightly different because they aren’t RDF. They are a set of simple data formats
that are based on widely used and accepted standards and vocabularies. To
convert Microformats data to RDF, you can utilize any of the techniques
covered in this chapter. All you need is a parser that can give you access to
the data, and then you can transform it as you wish to build RDF using the
techniques discussed in this chapter.

The important lesson to take away from this chapter is that there are tons
of tools, techniques, and technologies that you can use to convert data from
any format or representation into RDF so you can get it into the Semantic
Web. Once it is in the RDF model, you can combine it, augment it with an
ontology, translate it with SWRL rules, and query it with SPARQL. The key
is to make it accessible as RDF. Some of the techniques for doing so are more
generalized than others. Some of the techniques require stricter assumptions
about the stability and consistency of data. These are all factors that you will
have to consider when you set out to expose your data. Now that all of this
data is exposed as RDF, it’s time to draw connections between the knowledge
models of each. This is the next critical step in integrating data sources in the
Semantic Web.
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10

Aligning Information

‘‘The newest computer can merely compound, at speed, the oldest problem in the
relations between human beings, and in the end the communicator will be

confronted with the old problem, of what to say and how to say it.’’

—Edward R. Murrow

In the preceding chapters, you have learned about theoretical and practical
knowledge modeling with RDF and OWL, inference and reasoners, Jena,
triple stores, SPARQL, and SWRL. This chapter combines all of these threads
to describe the task of information integration and explains the role that
such integration plays in Semantic Web applications using the FriendTracker
application. Specifically, in this chapter, you will:

Learn about data source ontologies, domain ontologies, application
ontologies, and the role they play in Semantic Web applications

Learn about the FriendTracker application and get an introduction to
data-oriented software design

Learn about ontology alignment and how that process leads to truly inte-
grated information

See several concrete examples of different practical techniques for
ontology alignment in the context of the FriendTracker application

Data Source, Domain, and Application Ontologies

In Chapter 9, ‘‘Combining Information,’’ you learned how to transform data
from a variety of sources into RDF data for the Semantic Web. Even after
all of the data is represented in RDF, however, it is still not integrated in

361
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a meaningful sense because the information from each source is expressed
in a vocabulary specific to that source. These vocabularies are referred to as
data source ontologies, and they make it difficult to exploit the data they express.
If the consumer of the information is not aware of the particulars of each of the
data source ontologies, then he or she cannot make use of information from
that source. Even though the information has been combined, it has not been
integrated because the relationships between the concepts remain undefined.

Every community sees the world according to a particular perspective and
has different interests and concerns. When you, for example, get a bill from
your credit card company, you care about how much you owe and when it
is due. You pay little attention to the return address or how much it cost the
company to mail it. The U.S. Postal Service, on the other hand, cares only
about the source, destination, and postage of the correspondence and is utterly
indifferent to the contents. Moreover, when you send a letter, you think of the
postage stamp as an expenditure, whereas the Postal Service sees that same
stamp as a source of revenue. Which things are important, and even what they
mean, is, therefore, very much dependent on a particular context, or domain.
A domain ontology is a description of the concepts within a domain and the
relationships among those concepts. Integrating information for the Semantic
Web involves establishing connections and relationships between the concepts
of a data source ontology and those of the domain ontology.

The process of drawing connections and associations between two ontolo-
gies is called ontology alignment. To align one ontology with another is to
overlay the web of concepts described in the first with those of the second
so that parallels can be made between them. This process is at the heart of
information integration on the Semantic Web.

When actually building applications that use Semantic Web data, it is not
enough to establish mappings between data source ontologies and a domain
ontology. Just as each data source supports a particular view of the entities
it describes, so too does a piece of software. String length, for instance, is
something that a data source that’s producing RDF might not be concerned
with but that a consuming application might be. In general, software is built
on data structures and assumptions that may not be easily compatible with the
richer semantics of any particular domain ontology. Addressing this challenge
leads to the notion of an application ontology. An application ontology is a
domain ontology that represents the perspective of a software application. In
this chapter, we use the application ontology of FriendTracker as the domain
ontology to which we map the concepts of the data source ontologies.

Aligning Ontologies

To convert information from one ontological representation to another, there
must be a set of mappings between the two ontologies. Determining these
mappings is called aligning the ontologies. This can be a very challenging task.
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Ontologies can be large, with tens, hundreds, or even thousands of classes
and properties. Trying to take stock of such a complex framework of concepts
can be daunting. There is active research into techniques to automate the
process, but at this point, the task must ultimately be done by humans. While
current tools can calculate class name and graph similarity metrics to try to
give suggestions, they cannot yet consistently align ontologies automatically.
Some of the research in the field of automated ontology alignment is described
in Chapter 15, ‘‘Moving Forward.’’

There are two main approaches to manual ontology alignment. The first
involves establishing a mapping between two ontologies by mapping each
to a third shared ontology. Typically a foundational ontology is used in this
case. This can be a very helpful approach if mappings to align one ontology
with the foundation ontology already exist. Even if both ontologies have to be
aligned with the foundation ontology, future mapping tasks are made easier.
Nevertheless, it involves extra work in the short term, and if the concepts of
the foundation ontology are not able to capture all the meaning of one of the
ontologies precisely, that extra significance is lost in translation. It is worth
noting again the guidance to reuse ontologies whenever possible. One of the
main benefits of ontology reuse comes in the potential to reuse mappings
between ontologies.

The second approach to manual ontology alignment dispenses with the
intermediary and simply aligns the two ontologies directly with each other.
This is more straightforward, involves less up-front work, and helps ensure
that a precise alignment is possible. This is the way the ontologies are aligned
in the FriendTracker application.

Once two ontologies have been aligned and a proper mapping between their
concepts determined, the system must be made to perform that translation
at runtime. Several approaches are typically used in real-world applications
to accomplish this. We present examples of some of these techniques in
the context of FriendTracker later in the chapter. These techniques are not
mutually exclusive; depending on the size of the ontology, or the expression
of the concepts themselves, these approaches can be used in concert with each
other to achieve the translation.

Ontology Constructs
OWL supports many constructs that make it easy to express relationships
among concepts. Relationships between concepts in different ontologies
can be used to infer the desired results. Some of the most useful features
include owl:equivalentClass, owl:equivalentProperty, owl:sameAs, and
owl:inverseOf. In addition, the rdfs:subClassOf and rdfs:subPropertyOf

predicates provide very useful semantics. Consider the following example:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
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@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://semwebprogramming.org:8099/2009/chapter10/ex1-1#> .

:HomeDweller a owl:Class .

:Mother rdfs:subClassOf :HomeDweller .

:Father rdfs:subClassOf :HomeDweller .

:Son rdfs:subClassOf :HomeDweller .

:Daughter rdfs:subClassOf :HomeDweller .

:hasChild a owl:ObjectProperty .

:hasSon rdfs:subPropertyOf :hasChild .

:hasDaughter rdfs:subPropertyOf :hasChild .

This small ontology describes the people who might live together in a home.
A second ontology describes familial relationships:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://semwebprogramming.org:8099/2009/chapter10/ex1-2#> .

:Relative a owl:Class .

:Mother rdfs:subClassOf :Relative .

:Father rdfs:subClassOf :Relative .

:Child rdfs:subClassOf :Relative .

:hasParent a owl:ObjectProperty .

The relationships between these two sets of concepts can be expressed in
OWL. Consider the following set of statements:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix ex1: <http://semwebprogramming.org:8099/2009/chapter10/ex1-1#> .

@prefix ex2: <http://semwebprogramming.org:8099/2009/chapter10/ex1-2#> .

ex1:Mother owl:equivalentClass ex2:Mother .

ex1:Father owl:equivalentClass ex2:Father .

ex1:Son rdfs:subClassOf ex2:Child .

ex1:Daughter rdfs:subClassof ex2:Child .

ex1:hasChild owl:inverseOf ex2:hasParent .

In this mapping, the Father and Mother classes from each ontology have
been declared to be equivalent to each other. That implies that any individual
who is a member of the Father class in either ontology is also asserted to
be a Father in the other ontology, and the same for Mothers. The Son and
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Daughter classes have been set as rdfs:subClassOf the Child class, meaning
that membership in the Son or Daughter class implies membership in the
Child class, but that membership in the Child class by itself does not imply
anything. Finally, the hasChildproperty of the first ontology has been declared
as the inverse of the hasParent of the second ontology. Because the hasSon

and hasDaughter predicates from the first ontology are rdfs:subClassOf the
hasChild predicate, in a model with all three ontologies the statements

:James a ex1:Father ;

ex1:hasSon :David .

actually imply the following set of statements:

:James a ex1:Father ;

a ex2:Father ;

ex1:hasChild :David ;

ex1:hasSon :David .

:David ex2:hasParent :David .

This example shows how mapping can be accomplished with ontology
statements, but it also illustrates some of the challenges associated with
ontology alignment more generally. Because the second ontology does not
have a notion of gender as it relates to children, the Son and Daughter concepts
from the first ontology cannot be expressed in the second.

Translation via Rules
Rules can be used to express mappings between ontologies. This approach
works particularly well in combination with ontology constructs that support
mapping. Rule-based ontology mapping is nice because rules can be updated
or tweaked without having to rebuild the application, and also because rules
can be easily reused and shared. The ease with which rules can be shared
means that you are more likely to find already-created mappings if you
take a rule-based approach. Rule-based approaches have some shortcomings,
however. As discussed in Chapter 7, ‘‘Adding Rules,’’ there is not yet a single
rule language that enjoys universal support. SWRL is the closest candidate,
but many popular frameworks do not support it. Jena, for instance, has its
own rule engine and does not support SWRL. Jena can be used with the Pellet
reasoner to add SWRL support, but at the time of this writing even Pellet does
not provide complete support for all of the SWRL built-ins.

Explicit Translation
This approach is the most direct, and it could be characterized as the ‘‘brute-
force’’ approach. Equivalences and transformations between the ontologies
are explicitly encoded in software and then invoked whenever required. With
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large ontologies, this can be a very difficult and tedious task, and as is the case
with most difficult and tedious software, it is also prone to error. The resulting
mapping is also very inflexible because it is fixed at compile time. However,
this approach is simple to understand, and representing the mappings as
procedures allows developers to take advantage of the wealth of tools that
already exist for software development and debugging. Also, the decrease in
the flexibility of the mapping is offset by an increase in expressivity.

Ad Hoc Approaches to Translation
The best approach does not always fall so clearly into one of the previous
categories. Depending on the situation, sometimes an entirely different method
is used. Sometimes an Extensible Stylesheet Language Transformation (XSLT)
is appropriate or the use of a templating engine like Velocity. Sometimes
translation need not be done explicitly as a separate step and can be done
implicitly as part of a SPARQL query. For example, returning to the previous
examples, the following SPARQL query returns all of the individuals of the
Son and Daughter classes from the first ontology as individuals of the Child

class from the second ontology.

PREFIX ex1: <http://semwebprogramming.org:8099/2009/chapter10/ex1-1#>

PREFIX ex2: <http://semwebprogramming.org:8099/2009/chapter10/ex1-2#>

CONSTRUCT {

?person a ex2:Child .

?person2 a ex2:Child .

}

WHERE {

OPTIONAL { ?person a ex1:Son } .

OPTIONAL { ?person2 a ex1:Daughter } .

}

The best approach for any mapping task must be determined on a case-
by-case basis. The FriendTracker application demonstrates several of these
translation techniques.

FriendTracker

FriendTracker is an application that makes use of many of the techniques
and tools described throughout this book and illustrates how they can be
used in a practical way. FriendTracker allows users to view information
about their friends’ online personas and other associated information from
several online sources. The data sources supported by FriendTracker are those
described in the previous chapter, namely personal information from Facebook
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and Jabber, local events and activities from Upcoming.org, and posts from
WordPress blogs.

When the FriendTracker window appears, it presents the user with a list of
his or her friends. When the user selects a contact, more detailed information
about that person appears along with any blog posts he or she has authored.
If FriendTracker can determine the person’s hometown, it presents a set of
events taking place in and around that location. Selecting an event plots its
location on a map. Figure 10-1 shows the FriendTracker window with a friend
and event selected.

Figure 10-1 A screenshot of the FriendTracker application window

The goal of FriendTracker is to aggregate information from several different
online sources, so it is designed to be very extensible with respect to its
information access. In the UML class diagrams shown in Figures 10-2 and 10-3,
you can see the information managed by FriendTracker and how the sources
of friends, events, and blog posts are abstracted from the rest of the system.

Instances of classes that implement one of the -Source interfaces (Friend
Source, EventSource, and PostSource) can be added to a SourceCollection

instance, which then delegates requests it receives to these underlying sources.
This separation makes it relatively easy to add a new source of information to
FriendTracker: Implement one or more -Source interfaces, and then add the
source to the SourceCollection. A flexible design makes sense regardless of
whether the application is Semantic Web–oriented. Using Semantic Web data,
however, makes the implementation of a system like this easy.
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getNames() : Set
getHandles() : Set
getEmailAddresses() : Set
getOrigin() : String
getPictureURL() : String
getOnlineStatus() : OnlineStatus
addFriendChangeListener(listener : FriendChangeListener) : void
removeFriendChangeListener(listener : FriendChangeListener : void

<<interface>>
Friend

getID() : String
getName() : String
getLatitude() : double
getLongitude() : double

<<interface>>
Venue

Unknown
Offline
Busy
Away
Available

<<enumeration>>
OnlineStatus

getTitle() : String
getContent() : String
getPostDate() : Date
getID() : String

<<interface>>
Post

getTitle() : String
getDescription() : String
getVenue() : Venue
getStartTime() : Date
getID() :String

<<interface>>
Event

Figure 10-2 UML diagram of FriendTracker data objects

<<interface>>
FriendSource

SourceCollection-> FriendSource
 <<realize>>

getFriends() : List SourceCollection

_postSources : Set
_eventSources : Set
_friendSources : Set

addSource(friendSource : FriendSource : void
addSource(postSource : PostSource) : void
addSource(eventSource : EventSource) : void
removeSource(friendSource : FriendSource) : void
removeSource(postSource : PostSource) : void
removeSource(eventSource : EventSource) : void
getPosts(author : Friend) : List
getFriends() : List
getEvents(location : String) : List

<<interface>>
PostSource

getPosts(author : Friend) : List

SourceCollection-> EventSource
 <<realize>>

SourceCollection-> PostSource
 <<realize>>

<<interface>>
EventSource

getEvents(location : String) : List

Figure 10-3 UML diagram of FriendTracker -Source interfaces

Underlying FriendTracker is an application ontology that mirrors the Java
classes used by the program. The ontology defines properties and classes for
all of the information that is represented in the Java objects supplied by the
-Sources. A helper class called JenaSource, backed by a Jena model, serves as
a bridge between the ontology and the rest of the software. The JenaSource
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class can create and populate FriendTracker data objects (Friends, Events,
and Posts) based on data within its model so long as that data is encoded
according to the FriendTracker application ontology. Assuming that there is
useful information available encoded in the data source ontologies, all that
is required of an implementation of a new -Source interface is to establish
a proper conversion from the data source ontology to the FriendTracker
ontology (see figure 10-4).

Data
Source

A

RDF encoded in “Data Source A” ontology
JenaSource

subclass (e.g.
ASource)

Friend

Post

Event

Conversion to
“FriendTracker

application ontology”
encoding

Figure 10-4 Implementing a -Source interface in the FriendTracker application

In the FriendTracker application, the classes UpcomingEventSource, Word-
PressSource, FacebookFriendSource, and JabberFriendSource all implement
one or more of the -Source interfaces, and all subclass the JenaSource class.

In order to better understand the ontology alignment in FriendTracker,
consider the FriendTracker application ontology:

# This file describes the application ontology employed by the

# FriendTracker UI. Each of the properties and classes below can be

# populated by at least one of the data sources of FriendTracker:

# Facebook, Jabber, Upcoming, or WordPress

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix time: <http://www.w3.org/2006/time#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84 pos#> .
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@prefix : <http://semwebprogramming.org:8099/ont/friendtracker-ont#> .

# Friends represent people, and can come from Facebook, Jabber,

# or WordPress

:Friend a owl:Class ;

rdfs:subClassOf foaf:Person .

# Online status information is available from both Facebook and Jabber

:OnlineStatus a owl:Class ;

owl:oneOf (:Unknown :Available :Busy :Away :Offline) .

[] a owl:AllDifferent ;

owl:distinctMembers (:Unknown :Available :Busy :Away :Offline) .

# This predicate will be used for both people and events.

:isNamed a owl:DatatypeProperty .

# This predicate is a string which describes a location

# (City, state, country, etc.)

:isFrom a owl:DatatypeProperty ;

rdfs:range xsd:string .

# An OnlineStatus representing a person’s online status.

:hasStatus a owl:ObjectProperty ;

rdfs:range :OnlineStatus ;

rdfs:domain :Friend .

# A URL of a picture of a person or venue

:hasPic a owl:DatatypeProperty .

# This field is provided by Jabber and WordPress

:hasEmailAddress a owl:DatatypeProperty ;

rdfs:range xsd:string ;

rdfs:domain :Friend .

# This field is provided by Jabber and WordPress

:hasHandle a owl:DatatypeProperty ;

rdfs:range xsd:string ;

rdfs:domain :Friend .

# This predicate ties people to blog posts

:hasPost a owl:ObjectProperty ;

rdfs:range :Post ;

rdfs:domain :Friend .

# An event has a name, a start time, and a venue

:Event a owl:Class ;

rdfs:subClassOf [ a owl:Restriction ;

owl:onProperty :occursAt ;

owl:minCardinality "1"

] ,



Chapter 10 ■ Aligning Information 371

[ a owl:Restriction ;

owl:onProperty :isNamed ;

owl:minCardinality "1"

] ,

[ a owl:Restriction ;

owl:onProperty :hasVenue ;

owl:minCardinality "1"

] .

# A venue is a named point in space where an event takes place

:Venue a owl:Class ;

rdfs:subClassOf geo:Point ,

[ a owl:Restriction ;

owl:onProperty :isNamed ;

owl:minCardinality "1"

] .

# Associates an event with a Venue

:hasVenue a owl:ObjectProperty ;

rdfs:range :Venue ;

rdfs:domain :Event.

:hasDescription a owl:DatatypeProperty ;

rdfs:range xsd:string .

# Used for both events and blog posts

:occursAt a owl:ObjectProperty ;

rdfs:range time:Instant .

# Represents a blog post

:Post a owl:Class ;

rdfs:subClassOf [ a owl:Restriction ;

owl:onProperty :hasTitle ;

owl:cardinality "1"

] ,

[ a owl:Restriction ;

owl:onProperty :hasContent ;

owl:cardinality "1"

] ,

[ a owl:Restriction ;

owl:onProperty :occursAt ;

owl:cardinality "1"

] .

:hasTitle a owl:DatatypeProperty ;

rdfs:range xsd:string .

:hasContent a owl:DatatypeProperty ;

rdfs:range xsd:string .

Looking through the ontology, note the similarity between the classes and
properties to those of the FriendTracker Java objects. There are, for instance,
corresponding classes for Friend, Event, and Post. These OWL classes are
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designed to translate directly into the classes of objects (and in the case of
OnlineStatus, an enumeration) that will be used in the application. There
is some overloading of properties—the occursAt predicate is used for both
the time of an event and the publication time of a blog post. There need not
be a class or property for each class and relationship in the Java, so long as
the ontology is capable of unambiguously representing the information used
to build objects. This close correlation between the Java objects and the OWL
constructs is typical of application ontologies.

Aligning Ontologies with OWL and SWRL
One of the important information sources for the FriendTracker application is
Facebook. The following is the ontology describing the output of the Facebook
data source. The classes and properties to be mapped into the FriendTracker
ontology are in bold print.

@prefix f: <http://www.facebook.com/ontology#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

# Affiliation class and properties

f:Affiliation a owl:Class .

f:name a owl:DatatypeProperty .

# Location class and properties

f:Location a owl:Class .

f:city a owl:DatatypeProperty .

f:country a owl:DatatypeProperty .

f:state a owl:DatatypeProperty .

# Friend class and properties (f:name is used for Affiliations

# and Friends as well)

f:Friend a owl:Class .

f:interests a owl:DatatypeProperty .

f:books a owl:DatatypeProperty .

f:birthday a owl:DatatypeProperty .

f:activities a owl:DatatypeProperty .

f:movies a owl:DatatypeProperty .

f:music a owl:DatatypeProperty .

f:picture a owl:DatatypeProperty .

f:tv a owl:DatatypeProperty .

f:political a owl:DatatypeProperty .

f:location a owl:ObjectProperty .

f:hasAffiliation a owl:ObjectProperty .



Chapter 10 ■ Aligning Information 373

Some of the information from Facebook does not have a place in the Friend-
Tracker ontology. For instance, FriendTracker does not maintain information
about TV or movies, so that information cannot be expressed in its ontol-
ogy and cannot be mapped. Looking back at the relevant portions of the
FriendTracker ontology, it is clear that there are a few direct correspondences:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix : <http://semwebprogramming.org/2009/ftracker#> .

# Friends represent people, and can come from Facebook, Jabber,

# or WordPress

:Friend a owl:Class ;

rdfs:subClassOf foaf:Person .

# This predicate will be used for both people and events.

:isNamed a owl:DatatypeProperty .

# This predicate is a string which describes a location (City,

# state, country, etc.)

:isFrom a owl:DatatypeProperty ;

rdfs:range xsd:string .

# A URL of a picture of a person or venue

:hasPic a owl:DatatypeProperty .

The one sticking point is the location. In the Facebook ontology, the location
is represented as a bnode with city, state, and country properties. In the
FriendTracker ontology, the isFrom property represents the origin location
as a string. The relationship between the Facebook Friend class and the
FriendTracker Friend class, as well as the other properties, can be expressed
with owl:equivalentClass and owl:equivalentProperty statements, but the
location predicate requires a SWRL rule. Using the SWRL stringConcat

built-in, the rule can format the values of the city and state properties into a
<City>, <State> form that is appropriate for FriendTracker. The following
code shows the ontology statements and rule that map from the Facebook data
source ontology to the FriendTracker application ontology:

# Standard import statements

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
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# SWRL imports

@prefix swrl: <http://www.w3.org/2003/11/swrl#> .

@prefix swrlb: <http://www.w3.org/2003/11/swrlb#> .

# Domain imports

@prefix ft: <http://semwebprogramming.org/2009/ftracker#> .

@prefix facebook: <http://www.facebook.com/ontology#> .

@prefix : <http://semwebprogramming.org:8099/ont/ft-facebook-mapping#> .

facebook:Friend owl:equivalentClass ft:Friend .

facebook:name owl:equivalentProperty ft:isNamed .

facebook:picture owl:equivalentProperty ft:hasPic .

:state a swrl:Variable .

:city a swrl:Variable .

:person a swrl:Variable .

:loc a swrl:Variable .

:origin a swrl:Variable .

:OriginRule a swrl:Imp ;

swrl:body

(

[ a swrl:IndividualPropertyAtom ;

swrl:propertyPredicate facebook:location ;

swrl:argument1 :person ;

swrl:argument2 :loc

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate facebook:city ;

swrl:argument1 :loc ;

swrl:argument2 :city

]

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate facebook:state ;

swrl:argument1 :loc ;

swrl:argument2 :state

]

[ a swrl:BuiltinAtom ;

swrl:builtin swrlb:stringConcat ;

swrl:arguments (:origin :city ", " :state )

]

) ;

swrl:head

(

[ a swrl:DatavaluedPropertyAtom ;

swrl:propertyPredicate ft:isFrom ;

swrl:argument1 :person ;

swrl:argument2 :origin

]

) .
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Now that there is an ontology to bridge the gap between the data source and
the application ontology, we need to use it from within Java to convert between
them. The FacebookFriendSource class is a subclass of JenaSource, which is
able to create and populate FriendTracker Java objects based on instance data
encoded in the Facebook ontology. There are three important methods in the
FacebookFriendSource class, which are shown in the following code.

public class FacebookFriendSource extends JenaSource

implements FriendSource {

private FacebookRESTClient client;

private FacebookConfiguration config;

private String authToken = null;

@Override

protected void createModel() {

model =

ModelFactory.createOntologyModel(PelletReasonerFactory.THE SPEC);

}

@Override

public void initialize(Object configurationObject) {

// *Snip* Facebook client-specific configuration...

String mappingLocation = config.getMappingLocation();

String friendtrackerOntologyLocation =

config.getFriendTrackerOntologyLocation();

FileInputStream mappingStream = null;

FileInputStream friendtrackerOntologyStream = null;

try {

mappingStream = new FileInputStream(mappingLocation);

friendtrackerOntologyStream =

new FileInputStream(friendtrackerOntologyLocation);

// bring in the mapping stuff - OWL + rules...

model.read(

friendtrackerOntologyStream,

"http://semwebprogramming.org/2009/ftracker#",

"TURTLE");

model.prepare();

model.read(

mappingStream,

"http://semwebprogramming.org:8099/ont/ft-facebook-mapping#",

"TURTLE");

model.prepare();

} catch (FileNotFoundException e) {

throw new ProperException(e);

}

}
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public List<Friend> getFriends() {

List<Friend> toReturn;

String friendUids;

String authToken = getAuthToken();

FacebookSession session;

Collection<String> friends;

session = client.createSession(authToken);

friends = client.getFriendsList(session);

friendUids = Utilities.concatenateStringSet(

new HashSet<String>(friends));

model.read(

client.getPopulatedFriendsRdf(

session, friendUids, config.getFields(), "TURTLE"),

"",

"TURTLE");

toReturn = extractFriends();

return toReturn;

}

}

Within the FriendTracker application, the convention is for the methods to
be called in order: createModel, initialize, and then, at some point later
in the execution, getFriends. The createModel method is very short, and it
simply initializes a new Jena model defined by the JenaSource parent class.
It initializes that model using the Pellet reasoner because this class uses Pellet
for its SWRL processing and inferencing.

The initialize method loads the location of the FriendTracker ontology
and the mapping ontologies from the configuration objects, and then it uses the
Jena model to load those two ontologies. At this point, with the model primed
and Pellet engaged, any new statements in the Facebook data source ontology
will allow Pellet to infer the correct statements in the application ontology.
This is what happens upon a call to getFriends. The getFriends method calls
the Facebook RDF client from Chapter 9 and loads that information into the
model. Finally, a call to the JenaSource method extractFriends causes it to
create and populate FriendTracker Friend objects based on the information in
the model.

Aligning Ontologies with XSLT
If it is practical to serialize RDF encoded in a source ontology as RDF/XML, an
Extensible Stylesheet Language Transformation (XSLT) can sometimes be used
to map between ontologies. This can be a very desirable technique for mapping
given the widespread availability of XSLT tools and expertise. However, be
careful when considering this approach. It can be dangerous to use XSLTs for
ontology alignment because the same RDF graph can be serialized in different
ways. For example, consider the following two simple RDF/XML graphs:
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<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://example.org/example-ont#"

>

<owl:Class rdf:ID="Person" />

</rdf:RDF>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xml:base="http://example.org/example-ont#"

>

<rdf:Description rdf:about="#Person">

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class" />

</rdf:Description>

</rdf:RDF>

Both define a new class called Person and in fact represent the exact same
statement. An XSLT written to match the first serialization would not match
the second. In cases where the RDF/XML serialization is consistent and well
known, however, it is feasible to use an XSLT to do translations between
RDF/XML documents.

An example of this is the WordPress source. The WordPress client code,
based on the version in Chapter 9, uses Jena to perform the RDF/XML serializa-
tion, so it is always produced in a consistent way. The WordPressSource class
implements both FriendSource and PostSource because it maintains informa-
tion about the authors of the posts. Recall from Chapter 9 that the WordPress
data source works by issuing a SPARQL query against a D2RQ-enabled Word-
Press blog database. D2RQ translates the SPARQL query into SQL queries and
then sends the results back as RDF. The query used to generate the results is
reproduced here:

PREFIX wp: <http://www.semwebprogramming.net/wordpress/ontology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

CONSTRUCT

{

?user rdf:type wp:wp users;

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

?postProp ?postVal.
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}

WHERE

{

?user rdf:type wp:wp users;

wp:wp users ID ?uid;

?usersProp ?usersVal.

?post rdf:type wp:wp posts;

wp:wp posts post author ?uid;

wp:wp posts post type "post";

wp:wp posts post status "publish";

?postProp ?postVal.

}

FriendTracker can make use of only a subset of the many fields that
are returned for posts and authors. In particular, the fields wp posts post

content, wp posts post title, wp posts post date, and wp posts ID are rel-
evant for the Post objects, and the wp users ID, wp users user nicename,
wp users user login, and wp users user email fields are relevant for Friend
objects. These properties map easily to properties in the FriendTracker appli-
cation ontology. The following code shows the XSLT that FriendTracker uses
to map from the WordPress data source ontology to the application ontology:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:wp="http://www.semwebprogramming.net/wordpress/ontology#"

xmlns:ft="http://semwebprogramming.org/2009/ftracker#"

version="1.0">

<xsl:output method="xml" version="1.0" encoding="UTF-8"

indent="yes" />

<!-- match the root node (and add our own RDF root... -->

<xsl:template match="/rdf:RDF">

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:ft=

"http://semwebprogramming.org/2009/ftracker#"

xmlns:time="http://www.w3.org/2006/time#"

xml:base="http://semwebprogramming.org:8099/data/wordpress#"

>

<xsl:for-each select="rdf:Description">

<!-- Handle posts -->
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<xsl:if

test="rdf:type/@rdf:resource =

’http://www.semwebprogramming.net/wordpress/ontology#wp posts’">

<rdf:Description rdf:about="#post{wp:wp posts ID}">

<rdf:type

rdf:resource=

"http://semwebprogramming.org/2009/ftracker#Post"

/>

<ft:hasContent>

<xsl:value-of select="wp:wp posts post content" />

</ft:hasContent>

<ft:hasTitle>

<xsl:value-of select="wp:wp posts post title" />

</ft:hasTitle>

<ft:occursAt>

<time:Instant>

<time:inXSDDateTime>

<xsl:value-of

select="wp:wp posts post date" />

</time:inXSDDateTime>

</time:Instant>

</ft:occursAt>

</rdf:Description>

</xsl:if>

<!-- Handle users -->

<xsl:if

test="rdf:type/@rdf:resource =

’http://www.semwebprogramming.net/wordpress/ontology#wp users’">

<rdf:Description rdf:about="#user{wp:wp users ID}">

<rdf:type rdf:resource=

"http://semwebprogramming.org/2009/ftracker#Friend" />

<ft:isNamed>

<xsl:value-of select="wp:wp users user nicename"/>

</ft:isNamed>

<ft:isNamed>

<xsl:value-of select="wp:wp users user displayname"/>

</ft:isNamed>

<ft:hasHandle>

<xsl:value-of select="wp:wp users user login" />

</ft:hasHandle>

<ft:hasEmailAddress>

<xsl:value-of select="wp:wp users user email" />

</ft:hasEmailAddress>

</rdf:Description>

</xsl:if>

</xsl:for-each>

<!-- Associate posts with users -->

<xsl:for-each select="rdf:Description">
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<xsl:if test="rdf:type/@rdf:resource=

’http://www.semwebprogramming.net/wordpress/ontology#wp posts’">

<rdf:Description rdf:about="#user{wp:wp posts post author}">

<ft:hasPost rdf:resource="#post{wp:wp posts ID}" />

</rdf:Description>

</xsl:if>

</xsl:for-each>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

Because of the current state of SWRL and SWRL tool support, some ontology
translation operations are significantly easier to accomplish with an XSLT as
compared to SWRL rules. For example, in the WordPress XSLT, each resulting
Post and Friend instance is assigned an IRI that is based on its primary key
within the database. This is a valuable characteristic because that IRI is now
consistent and unique. Subsequent queries to WordPress that return the same
IRI will be describing the same users and blog posts. This is something that is
not easily accomplished with the SWRL support of today. We can expect that
as time passes and a Semantic Web rule standard settles, XSLT will become
less relevant to ontology translation, but until that time it remains a valuable
tool for Semantic Web application developers.

At this point, it is useful to turn back to the Java code, specifically to the
JenaSource class. In the code that follows we see how the JenaSource class
uses a SPARQL query against its internal model to generate new Post objects
when requested:

protected List<Post> extractPosts() {

List<Post> toReturn = new ArrayList<Post>();

final String queryString =

"PREFIX ft: <" + FriendTracker.Base.getString() + "> \n" +

"PREFIX time: <" + Time.Base.getString() + "> \n" +

"SELECT ?post ?title ?content ?date \n" +

"WHERE { ?post a ft:Post ; ft:hasTitle ?title ; \n" +

" ft:hasContent ?content ; \n" +

" ft:occursAt [ time:inXSDDateTime ?date ]}";

Query query;

QueryExecution queryExecution;

ResultSet rs;

query = QueryFactory.create(queryString);

queryExecution = QueryExecutionFactory.create(query, model);

rs = queryExecution.execSelect();

while(rs.hasNext()){

QuerySolution solution = rs.nextSolution();

RDFNode temp;

PostImpl post = new PostImpl();

temp = solution.get("post");
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post.setID(temp.asNode().getURI());

temp = solution.get("title");

post.setTitle(extractValueFromNode(temp));

temp = solution.get("content");

post.setContent(extractValueFromNode(temp));

temp = solution.get("date");

post.setPostDate(parseDate(extractValueFromNode(temp)));

toReturn.add(post);

}

return toReturn;

}

Just as the FacebookFriendSource called JenaSource’s extractFriends

method, so does the WordPressSource call the extractPosts method. Here
you can see the method in its entirety. It shows how to use SPARQL queries
to navigate the graph of statements to quickly extract useful data.

Aligning Ontologies with Code
While external tools like SWRL and XSLT can simplify ontology alignment
and translation, sometimes it is more appropriate to use code for this task.
These tools are very helpful, but depending on the resource or performance
constraints on your application, it may make sense to investigate optimizing
translation code and implementing it by hand. The UpcomingEventSource has
been implemented to manually perform an ontology mapping as an illustration
of how to proceed in this situation.

The structure of the ontology translation code within the Upcoming

EventSource models the structure of the data upon which it operates.
Execution flows downward through the methods performConversionFrom

UpcomingOntToFriendTrackerOnt, convertOneEvent, and convertOneVenue

until all of the events and their associated venues have been re-expressed
according to the FriendTracker application ontology. As a representative
example of the way these methods work, the following example shows the
convertOneVenue method:

private void convertOneVenue(Resource upcomingEvent, Individual venue) {

String venueName;

String venueLat;

String venueLong;

venueName = extractValueFromNode(

getFirstNode(

model.listObjectsOfProperty(

upcomingEvent,

model.createProperty(

Upcoming.getString(Upcoming.Base) + "VenueName"))));
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venueLat = extractValueFromNode(

getFirstNode(

model.listObjectsOfProperty(

upcomingEvent,

model.createProperty(

Upcoming.getString(Upcoming.Base) + "Latitude"))));

venueLong = extractValueFromNode(

getFirstNode(

model.listObjectsOfProperty(

upcomingEvent,

model.createProperty(

Upcoming.getString(Upcoming.Base) + "Longitude"))));

if(null != venueName)

{

model.add(venue, getProperty(FriendTracker.isNamed), venueName);

}

if(null != venueLat)

{

model.add(venue, getProperty(Geo.latitude), venueLat);

}

if(null != venueLong)

{

model.add(venue, getProperty(Geo.longitude), venueLong);

}

model.add(upcomingEvent, getProperty(FriendTracker.hasVenue), venue);

}

Navigating the graph this way can be very efficient, particularly when the
structure of the classes and relationships in the data source ontology aligns
closely with the structure of those in the application ontology. Without similar
graph structures, the software must pass around so much context between
methods that the code can become less efficient. This approach also has
the drawback of a tight dependency on the framework. While a change of
underlying framework would require changes to the data source even if SWRL
or XSLT were used, in the case where the mapping occurs in external tools
that conform to well-known standards, the dependency is just on the interface
code and not on the business logic.

Aligning Simple Ontologies with RDFS
We’ve seen how OWL and SWRL can be used to align ontologies. In some
cases, however, OWL and SWRL are more powerful tools than are required.
Albert Einstein famously said, ‘‘Make everything as simple as possible, but no
simpler.’’ In the case of RDFS and OWL, following that advice and choosing to
represent mappings in RDFS as opposed to OWL can net significant dividends.
Tool support for RDFS is more widespread than for OWL, which means that
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avoiding OWL in favor of RDFS offers more choices of tool implementations.
In addition, because RDFS is relatively less expressive than OWL, an inference
engine that implements only RDFS reasoning can often be made to run faster
than one that must also consider OWL semantics.

RDFS reasoning can be more useful for practical alignment than might imme-
diately be obvious. Take, for instance, the case of the owl:equivalentClass

and owl:equivalentProperty constructs. While these are invaluable for rigor-
ous ontology alignment, in the case of an application like FriendTracker where
the mapping between data source and application ontologies need only be
one-way, rdfs:subClassOf and rdfs:subPropertyOf are sufficient. Consider
the case of the Jabber data source ontology:

# Standard import statements

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix : <http://www.jabber.org/ontology#> .

:Contact a owl:Class .

:name a owl:DatatypeProperty .

:status a owl:DatatypeProperty .

:presenceType a owl:ObjectProperty .

:presenceMode a owl:ObjectProperty .

It is clear that there is an owl:equivalentClass relationship between the
Contact class of the Jabber ontology and the Friend class of the FriendTracker
ontology, as well as an owl:equivalentProperty relationship between name

and isNamed. FriendTracker never uses the Jabber client in such a way as
to need to represent contacts from Facebook or WordPress as Jabber objects.
There would in fact be no point of doing that in this case, since we can query
the Jabber service only with reference to Jabber users. In this case, it is sufficient
to use the rdfs:subClassOf and rdfs:subPropertyOf statements instead of
the OWL constructs. These will result in the proper assertions from the point
of view of FriendTracker, which is sufficient here. The mapping for this class
and property is as follows:

@prefix friendtracker:

<http://semwebprogramming.org/2009/ftracker#> .

@prefix jabber: <http://www.jabber.org/ontology#> .

jabber:Contact rdfs:subClassOf friendtracker:Friend .

jabber:name rdfs:subPropertyOf friendtracker:isNamed .

Restricting the mapping vocabulary to RDFS and excluding OWL means
that a wider range of reasoner implementations is available. Of course, while
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this mapping is sufficient for this property and class, it does not cover the
presenceType and presenceMode predicates. These can be mapped explicitly
using a lookup in code:

private Model performMappingQuery(String ftProp, String ftVal,

String jabProp, String jabVal) {

String queryString = String.format(

"CONSTRUCT {\n " +

"?person <%1$s> <%2$s> .\n" +

"}\n" +

"WHERE {\n" +

"?person <%3$s> <%4$s> .\n" +

"}",

ftProp,

ftVal,

jabProp,

jabVal);

Query query = QueryFactory.create(queryString);

QueryExecution queryExec =

QueryExecutionFactory.create(query, model);

return queryExec.execConstruct();

}

private void convertStatus() {

final String jabberOnt = config.getBaseOntologyUri();

model.add(

performMappingQuery(

FriendTracker.hasStatus.getString(),

FriendTracker.AvailableStatus.getString(),

jabberOnt + "presenceMode",

jabberOnt + "Available"));

// Perform similar mapping queries for Away, DoNotDisturb and

// unavailable...

}

This approach is very practical in that it has no dependencies except for
Jena, uses the simplest RDFS reasoning possible, and complements that with
a few small queries. This code is easy to understand and performs well.

FriendTracker is an example of how easy Semantic Web technologies can
make information integration. Careful design of the application ontology and
a small amount of work to create the JenaSource class is all it took to establish
a flexible system that can integrate new sources with minimal marginal work.
Each new data source need only accomplish a mapping between its own
ontology and the FriendTracker ontology to be used by the application.

Each source was essentially a thin wrapper around a shared Jena model. In
the case of the Facebook and WordPress modules, there were not any direct
dependencies on the ontologies that would require a recompilation should
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the data source ontologies be altered. The only ontology on which there was
a significant dependency was the application ontology, which represents the
mode of operation for the entire program itself.

This approach to software development has some advantages that reach
beyond a single application. When designing a data source client, you can feel
assured that if you use an ontology as your output format, then consumers of
all sorts will be able to easily access your results. Ontological representations
like those used in FriendTracker also update well. Because the mappings from
the data source ontology to the application ontology care only about specific
fields, it does not matter if new fields are added in the future. Using a standard
format like OWL means that you can spend less of your time implementing
each data source and be confident that you will be able to reuse your code in
the future.

So far in the chapter, we’ve seen how to use Semantic Web technologies to
align ontologies and integrate information. However, there remains another
component to information integration that we have not mentioned: record
linkage.

Record Linkage

Record linkage describes the issue of two entity descriptions that actually refer
to the same entity. This is a widespread problem that is not specific to Semantic
Web approaches to information integration; the term record linkage is used in
relational database communities as well.

This problem has two dimensions. The first is the challenge of determining
when two descriptions describe the same entity; the second is how to handle
that situation once it is identified. There are sometimes easy solutions to both
aspects, but often one or both present complications.

Sometimes characteristics of data sets can make it feasible to determine
automatically that two entities are the same. Functional and inverse functional
predicates (explained in detail in Chapter 4, ‘‘Incorporating Semantics’’), for
example, provide some support for automatically determining when two
individuals are identical.

If entities can be uniquely identified by some characteristic, say a Social
Security Number for people or a Universal Product Code for merchandise,
and if that value is available from all of the data sources in an application,
then the identification question becomes a trivial one. In fact, the owl:hasKey

construct is designed to address precisely this situation:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .
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@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix : <http://semwebprogramming.org:8099/2009/chapter10/ex2#> .

:Product a owl:Class .

:PeanutButter a owl:Class ;

rdfs:subClassOf :Product .

:hasName a owl:DatatypeProperty ;

rdfs:range xsd:string .

:Crunchiness a owl:Class ;

owl:oneOf (:Crunchy :Creamy) .

:Crunchy owl:differentFrom :Creamy .

:hasCrunchiness a owl:ObjectProperty ;

rdfs:domain :Product ;

rdfs:range :Crunchiness .

:hasSize a owl:DatatypeProperty .

:hasUPC a owl:DatatypeProperty ;

rdfs:domain :Product ;

rdfs:range xsd:string .

:Product owl:hasKey :hasUPC .

[] a :Product ;

:hasName "JIF Peanut Butter" ;

:hasSize "18" ;

:hasUPC "051500241356" .

[] a :Product ;

:hasName "JIF Peanut Butter" ;

:hasSize "18" ;

:hasUPC "051500241288" .

[] a :PeanutButter ;

:hasName "Peanut Butter" ;

:hasCrunchiness :Creamy ;

:hasUPC "051500241288" .

[] a :PeanutButter ;

:hasName "Peanut Butter" ;

:hasCrunchiness :Crunchy ;

:hasUPC "051500241356" .

The semantics of owl:hasKey are such that if two instances have the same
key, then they are implied to be the same instance. The preceding code shows
four instances: two that describe the crunchiness of the peanut butter and
two that include a size in ounces. The owl:hasKey assertion helps to tie the
instances together to give a more complete picture of the project. With the owl:
hasKey statement, we can infer that there are in fact two instances as described:
one creamy, one crunchy, and both 18 ounces.

If, however, no single identifying set of characteristics is available to serve as
the role of a primary key, then things become much more difficult. The power
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of the Semantic Web is that it allows for the interchange of information from a
multitude of heterogeneous sources that need not share any knowledge of one
another, but those exact characteristics make it difficult to identify duplicate
descriptions. This is a question for which there is no correct answer, and each
application developer must consider it on a case-by-case basis depending on
the particular situation.

Generally speaking, presenting users with the opportunity to identify dupli-
cate entities is a useful approach, since their familiarity with the application
domain should make them good judges. An enhancement of this basic idea
is to flag entities as possible duplicates based on any number of similarity
measures. Even if the available data is not sufficient to declare with certainty
that two individuals are identical, reducing the burden placed on users to
make these sorts of determinations is valuable. Which values are the most
significant determinants of similarity depends on the application domain.

The picture is a little brighter once duplicates have been identified. OWL
provides a construct for expressing that two individual entities are the same as
one another: owl:sameAs. If two entities have been asserted to be owl:sameAs

each other, then every statement for which either entity is the subject or object
is equally valid for the other. For example, the following statements:

:A owl:sameAs :B .

:A :hasName "Adam" .

:B :hasName "Betty" .

:A :isTallerThan :B .

imply the following additional statements:

:A :hasName "Betty" .

:B :hasName "Adam" .

:B :isTallerThan :A .

:A :isTallerThan :A .

:B :isTallerThan :B .

:B owl:sameAs :A .

:A owl:sameAs :A .

:B owl:sameAs :B .

By virtue of the owl:sameAs statement, :A and :B have been identified as
alternate names for the same individual entity. This can be a very powerful
tool, but it can present issues as well. Suppose that the user who asserted :A

owl:sameAs :B saw the additional statements and decided that there was a
contradiction in the notion of :A :isTallerThan :A and wanted to change his
mind. With a forward-chaining reasoner, the extra assertions could have been
entailed and added to the knowledgebase in a way that would have made it
difficult if not impossible to determine what the original set of statements was.

Another approach is to introduce your own concepts into the application
ontology that represent the concept of sameness. For example, a predicate
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like provisionallySameAs could be used to express the idea that the present
working assumption is that two individuals are identical. This method avoids
the automatic entailment of statements that could be wrong, but at its own
cost. Because OWL reasoners do not recognize this predicate as significant,
they will not entail any extra statements based on it. This of course means
that you will have to either modify the queries used by your system to
accommodate this concept or implement some other method of behaving,
treating provisionallySameAs entities appropriately. Using a custom property
means that querying the model becomes more complicated, but it is often the
right approach for long-lived systems.

Summary

In this chapter, you’ve learned about information integration via ontology
alignment and seen the various techniques employed by the FriendTracker
application. You’ve seen some of the benefits of a data-centered application
design and the flexibility it affords. In Chapter 11, ‘‘Sharing Information,’’
you’ll learn ways to take integrated information and expose it to the wider
world.
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Sharing Information
‘‘Share Everything.’’

—Robert Fulghum

Information was meant to be free and the Semantic Web gives us a powerful
platform in which to share it. In this high-level section, you’ve learned about
locating RDF information and integrating various RDF data providers into
the FriendTracker application. This chapter will cover the different ways in
which we can take the output of our application and share it with the global
community. As you’ll see, sharing isn’t limited to standing up a SPARQL
endpoint or placing a static RDF file on your web server. There are all sorts
of ways to share semantic information so others can use it for their needs,
quickly building a chain of use and reuse from data far removed from its
original purpose. Additional topics like microformats and their relation to the
Semantic Web will also be covered.

This chapter also covers:

Microformats

eRDF

RDFa

Tools and frameworks that expose RDF data

Creating a web page with embedded RDFa data based on the Friend-
Tracker ontology

389



390 Part III ■ Building Semantic Web Applications

Microformats

Microformats, in the simplest definition, are XML tags that are incorporated
into XHTML web pages and support the declarative expression of semantics.
The fundamental components of microformats are laid out in Figure 11-1 and
are based on information located at www.microformats.org. The idea behind
microformats is straightforward: By enriching existing websites with the addi-
tion of attributes such as class and rel, it is easy for both people and intelligent
agents (such as web crawlers or a web scrapers) to determine semantics that
otherwise aren’t apparent. Microformats provide a quick and easy way for
web authors to assist human or computer consumers in understanding intent.
For example, if Matt’s web page has a link to Ryan’s web page, there was a
reason why Matt added that link in the first place. Are they work associates?
Perhaps Ryan has some online documents that Matt feels are important to his
business? Are they friends? Close friends, simple acquaintances or are they
somehow related? It is dangerous to infer any relationship based on other
attributes, such as the number of hyperlinks Matt has to Ryan’s pages or the
use of contextually-ambiguous phrases such as, ‘‘Ryan is my brother’’ within
the web page. However, if a tag was explicitly added by the author regarding
that content, the intent of the data is clarified:

<a href= rel=“friend co-worker“>Ryan’s page</a>

Matt’s connection to Ryan is based on a professional and more-than-casual
relationship given the presence of the relationship (rel) attribute and the
friend and co-worker values, all of which are defined as part of the XFN
(XHTML Friends Network) microformat. We did not need to infer any rela-
tionship as it was explicitly declared for us. There was no need for recreating
data in a format such as OWL because the use of the rel tag is standard
XHTML. There is a need to conform to a single vocabulary. In a nutshell,
that is what microformats are all about: reuse, simplicity and support for
embedded information (see Figure 11-1).

Compound microformats

Elemental microformats

XHTML

XML

Simple microformats
use single attributes
like class or rel
(e.g. XOXO)

Compound
microformats build
upon elemental
microformats for more
complex microformats
(e.g. hCard)

Figure 11-1 The building blocks of microformats

Note that the larger issues of trust (can I assume that the editor/author
of Matt’s web content is being truthful) or access (can I assume that proper
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permissions to manage Matt’s data have been given to only those authorized
individuals) are important but not necessary to understand the technology
which is the focus here.

USING HCARD

We can quickly add our business card information to our website with a few
small additions highlighted below. Information can be posted for machine
harvesting but hidden from human eyes using the style=’’display: none;’’ entry:

<h1>Contact Information:</h1>

<div id=“hcard-John-Doe“ class=“vcard“>

<a class=“url fn“ href=http://example.org/johndoe

style=“display: none;“>Johnathan Doe</a>

<div class=“title“ style=“display: none;“>

Software Engineer</div>

<div class=“url“ style=“display: none;“>

http://www.example.org</div>

<div class=“org“>Acme Systems</div>

<div class=“adr“>

<div class=“street-address“>123 Main Street</div>

<span class=“locality“>Arlington</span>,

<span class=“region“>VA</span>,

<span class=“postal-code“>12345</span>

<div class=“country-name“>USA</div>

</div>

<div class=“tel“><span class=“type“>work</span>:

<span class=“value“>703-555-1234</span></div>

<a class=“email“>jdoe@example.org</a>

</div>

Each of the class values such as tel and email are known hCard properties
and very closely map to the vCard specification, RFC 2426.

Microformats were born from the desire to achieve some of the same goals
as the Semantic Web: adding structure to web-based content, supporting
decentralized knowledge management and developing community standards
to encourage structure reuse. Yet they differ in several aspects. Microformats
aren’t driven by a single entity much like the Semantic Web is centered around
the activities of the W3C. Sometimes referred to as the ‘‘lowercase semantic
web’’, microformats are for human consumption first, machine readability
second. They emphasize incorporating markup into existing web documents
over the creation of new formats (e.g., OWL, RDF) which work well when the
data is the same.

Our intent here is not to declare that microformats are better than the
Semantic Web or vice versa. Both have their advantages and disadvantages
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and, more importantly, each helps illuminate issues that developers can work
to address in both areas. We are not of the opinion that these two technologies
are completely diametric. In fact, RDFa is examined in the next section as a
technology to capitalize on some of the advantages of both worlds. In closing,
some of the most popular microformats are listed below. Their adoption by
such products such as Microsoft’s Internet Explorer (version 8), Mozilla’s
Firefox (version 3), Google’s Social Graph API and Yahoo’s SearchMonkey
strongly suggests that they will be around for quite a while:

XFN, short for XHTML Friends Network, describes various rela-
tionships between people based on over fifteen different values,
all using the rel XML attribute (http://www.gmpg.org/xfn/).

hCard specifies information about people, locations, organiza-
tions or companies. Based on the vCard RFC 2426 standard,
it supports several dozen attributes and values that map
well to information found on a business card or stored in an
address book (http://microformats.org/wiki/hcard).

hCalendar relies on the iCalendar representation, as described
in RFC 2445 to detail a calendar-dependent event. It covers all
the fundamentals such as beginning and end dates and times
(using ISO8601), event summary and locations using latitude and
longitude values (http://microformats.org/wiki/hcalendar).

XOXO describes outlines, numbered lists, and bulleted lists but
enriches them with information such as titles, descriptions,
and URLs (http://microformats.org/wiki/xoxo).

Rel-License describes the use of rel=license attribute/value
in a hyperlink to specify that the link’s endpoint refers to a
license (e.g., Creative Commons) for the content on that given
page (http://microformats.org/wiki/rel-license).

hReview is a microformat to detail reviews of anything. The
syntax supports standard review information such as quanti-
tative ratings (http://microformats.org/wiki/hreview).

eRDF

eRDF, shorthand for embedded RDF, is a subset of RDF that works well for
placement in XHTML or HTML. By subset, we mean that several items that
are part of the formal RDF Recommendation are not supported in eRDF:

Blank nodes

Containers Bag, Seq, and Alt
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Implicit typing such as RDFS subclassing

Typed literals

Arbitrary statements where either the subject or object can refer to URIs
outside the superseding document

The basics of eRDF are straightforward. First, developers can declare their
web pages as containing eRDF content by the use of the profile attribute in
the head element of (X)HTML:

<html>

<head profile=“http://purl.org/NET/erdf/profile“>

...

</head>

</html>

The profile URL is an explicit declaration that the webpage’s data has some
amount of data described in eRDF as well as providing a resolvable endpoint
for executable transformations (e.g., XSLT stylesheets) that can be applied
against the web page.

Second, developers denote namespaces using the link element and the
relationship attribute. Note that the rel attribute should always begin with
the syntax, schema. and be followed by the namespace prefix:

<html>

<head profile=“http://purl.org/NET/erdf/profile“>

...

<link rel=“schema.rdf“

href=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“ />

<link rel=“schema.rdfs“

href=“http://www.w3.org/2000/01/rdf-schema#“ />

<link rel=“schema.dc“

href=“http://purl.org/dc/elements/1.1/“ />

<link rel=“schema.foaf“

href=“http://xmlns.com/foaf/0.1/“ />

<link rel=“schema.doap“

href=“http://usefulinc.com/ns/doap#“ />

<link rel=“schema.wn“

href=“http://www.w3.org/2006/03/wn/wn20/schema/“ />

</head>

</html>

The third step involves the actual creation of statements. The following
code gives various examples in both the head and the body of a document. For
a definitive list of eRDF syntax, visit http://research.talis.com/2005/erdf/
wiki/Main/RdfInHtml.

<html>

<head profile=“http://purl.org/NET/erdf/profile“>
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<base href=“http://www.semwebprogramming.org/erdf“ />

<link rel=“schema.rdf“

href=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“ />

<link rel=“schema.rdfs“

href=“http://www.w3.org/2000/01/rdf-schema#“ />

<link rel=“schema.foaf“

href=“http://xmlns.com/foaf/0.1/“ />

<!-- Object property in the head section -->

<link rel=“foaf.maker“ href=“#matt“ />

<!-- contains the statement:

<http://www.semwebprogramming.org/erdf>

<http://xmlns.com/foaf/0.1/maker>

<http://www.semwebprogramming.org/erdf#matt> -->

<!-- Datatype property in the head section -->

<meta name=“rdf.label“ content=“eRDF info“ />

<!-- contains the statement:

<http://www.semwebprogramming.org/erdf>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#label>

“eRDF info“ -->

<!-- Two object properties in the head section

Using rev to reverse the triple direction -->

<link rev=“foaf.made foaf.interest“ href=“#matt“ />

<!-- contains the statements:

<http://www.semwebprogramming.org/erdf#matt>

<http://xmlns.com/foaf/0.1/made>

<http://www.semwebprogramming.org/erdf>

<http://www.semwebprogramming.org/erdf#matt>

<http://xmlns.com/foaf/0.1/interest>

<http://www.semwebprogramming.org/erdf> -->

</head>

<body>

<!-- object properties in the document body

connecting Matt to John. The leading hyphen

denotes an RDF class affiliation (foaf:Person)

-->

<div id=“matt“ class=“-foaf-Person“>

Matt used to work with

<span class=“-foaf-Person foaf-knows“ id=“john“>

John</span> on site.

</div>

<!-- contains the statements:

<http://www.semwebprogramming.org/erdf#matt>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>
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<http://www.semwebprogramming.org/erdf#john>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>

<http://www.semwebprogramming.org/erdf#matt>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org/erdf#john> -->

</body>

</html>

eRDF was spearheaded by Ian Davis, CTO and director of Talis,
and saw most of its development activity in 2005 and 2006. There is
no type of autogenerator available online (although given the inherent
flexibility of RDF, this is understandable), but there are services available
to extract RDF from eRDF documents. For example, http://arc.semsol.

org/docs/v2/extractors provides PHP extraction code for eRDF and
Talis provides both a webpage and the underlying XSLT stylesheet at
http://research.talis.com/2005/erdf/extract.

RDFa

RDFa is a W3C Recommendation that permits embedded semantics in existing
XHTML pages. If people have already taken the time to create web pages
with limited semantics based on hyperlinks and layout tags such as div and
span, why not reuse or enrich them? RDFa evolved after microformats and
it attempts to take the best of microformats, such as enriching existing web
content with semantics and removing the need of heavy Semantic Web knowl-
edge via easy syntax, while overcoming some of their most visible issues, such
as unscoped vocabularies as well as required community standardization
stovepipes and mixing and matching various microformats. RDFa is interop-
erable with the RDF W3C Recommendations, supporting XML namespaces
and CURIEs (Compact URIs).

RDFa supports distributed knowledge management, just like the Semantic
Web. Since developers and knowledge engineers will want to (and regularly
do) create their own vocabularies, taxonomies, and ontologies, RDFa enables
these data providers to create and publish their information without restriction.
From the RDFa Recommendation, we can get a sense of how web pages can
embed RDF (http://www.w3.org/TR/rdfa-syntax/):

In RDFa, a subject [URI reference] is generally indicated using @about, and
predicates are represented using one of @property, @rel, or @rev. Objects which
are [URI reference]s are represented using @href, @resource or @src, whilst
objects that are [literal]s are represented either with @content or the content of
the element in question (with an optional datatype expressed using @datatype).
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Supported Attributes
Here is the list of RDFa-friendly attributes with extracts of code examples:

xmlns

A prefix and qualified URL defining an XML namespace for the document.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:cyc=“http://www.cyc.com/2003/04/01/cyc/“>

. . .

</html>

rel

A white space–separated list of reserved keywords (listed in the sidebar) or
CURIEs, that details predicates between resources (no literals).

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:cyc=“http://www.cyc.com/2003/04/01/cyc/“>

<head>

<title>rel example</title>

<link

about=“http://www.semwebprogramming.org#Matt“

rel=“foaf:knows cyc:likesAsFriend“

href=“http://www.semwebprogramming.org#Andrew“/>

</head>

</html>

It results in triples:

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org#Andrew>

<http://www.semwebprogramming.org#Matt>

<http://www.cyc.com/2003/04/01/cyc/likesAsFriend>

<http://www.semwebprogramming.org#Andrew>

REL AND REV RESERVED KEYWORDS

The RDFa Recommendation details a list of reserved keywords for the rel and
rev attributes and is placed here for quick reference. These keywords provide

(continued)
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REL AND REV RESERVED KEYWORDS (continued)

shortcuts that derive from the XHTML Metainformation Vocabulary and utilize
the http://www.w3.org/1999/xhtml/vocab# namespace.

Keyword Meaning

alternate Designates alternate versions for a resource

appendix Refers to a resource serving as an appendix in a collection

bookmark Refers to a bookmark. A bookmark is a link to a key entry point
within an extended document.

cite Refers to a resource that defines a citation

chapter Refers to a resource serving as a chapter in a collection

contents Refers to a resource serving as a table of contents

copyright Refers to a copyright statement for the resource

first Refers to the first item in a collection (see also start and top)

glossary Refers to a resource providing a glossary of terms

help Refers to a resource offering help (more information, links to
other sources of information, etc.)

icon Refers to a resource that represents an icon

index Refers to a resource providing an index

last Refers to the last resource in a collection of resources

license Refers to a resource that defines the license associated with a
resource

meta Refers to a resource that provides metadata, for instance in RDF

next Refers to the next resource (after the current one) in an ordered
collection

p3pv1 Refers to a P3P Policy Reference File : http://www.w3.
org/TR/rdfa-syntax/#ref P3P

prev Refers to the previous resource (before the current one) in an
ordered collection

role Indicates the purpose of the resource

section Refers to a resource serving as a section in a collection

stylesheet Refers to a resource acting as a stylesheet for a resource

subsection Refers to a resource serving as a subsection in a collection

start Refers to the first resource in a collection of resources. A typical
use case might be a collection of chapters in a book

top Synonym for start

up Refers to the resource ‘‘above’’ in a hierarchically structured set
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rev

A white space–separated list of reserved keywords (listed in the sidebar) or
CURIEs that details predicates between resources (no literals) in a direction
opposite of the rel attribute.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:cyc=“http://www.cyc.com/2003/04/01/cyc/“>

<head>

<title>rev example</title>

<link

about=“http://www.semwebprogramming.org#Matt“

rev=“foaf:knows cyc:likesAsFriend“

href=“http://www.semwebprogramming.org#Andrew“/>

</head>

</html>

It results in triples:

<http://www.semwebprogramming.org#Andrew>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org#Matt>

<http://www.semwebprogramming.org#Andrew>

<http://www.cyc.com/2003/04/01/cyc/likesAsFriend>

<http://www.semwebprogramming.org#Matt>

content

A plain literal (string) that is used to represent an object in an RDF triple.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“>

<head>

<title>content example</title>

<link

about=“http://www.semwebprogramming.org#Matt“

property=“foaf:family name“

content=“Fisher“/>

</head>

</html>

Results in triple:

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/family name>

“Fisher“
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href

A resource URI that is used to represent an object in an RDF triple. See rel,
rev for an example.

src

A resource URI that is used to represent a subject in an RDF triple. Its function
is identical to about.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“>

<body>

<img

src=“http://www.semwebprogramming.org/Title.png“

rev=“foaf:depiction“

href=“http://www.semwebprogramming.org“/>

</body>

</html>

Results in triple:

<http://www.semwebprogramming.org>

<http://xmlns.com/foaf/0.1/depiction>

<http://www.semwebprogramming.org/Title.png>

The following attributes have been introduced as part of RDFa:

about

A resource URI or CURIE that is used to represent a subject in an RDF triple.
Its function is identical to src but is not limited to img elements. See rel, rev,
or content for an example.

property

A white space–separated list of CURIEs that details predicates between a
subject and a plain literal.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“>

<body>

Here’s the story of a man named

<div about=“http://www.semwebprogramming.org#Matt“

property=“foaf:firstName foaf:nick“

content=“Matt“>

<div property=“foaf:title“ content=“Mr“>Fisher
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</div>

</div>

</body>

</html>

It results in triples:

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/nick>

“Matt“

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/firstName>

“Matt“

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/title>

“Mr“

SAFE CURIES

For those attributes that support either URIs or CURIEs, specifically attributes
resource and about, an RDFa parser needs to be able to differentiate
between the two URI types, otherwise incorrect expansion could occur. By
using safe CURIE notation, where the CURIE is surrounded by square brackets
([ or ]), an RDFa parser can interpret the proper type of URI used. A safe CURIE
can be used anywhere a regular CURIE is supported. See resource for an
example of the syntax.

resource

A resource URI or CURIE that is used to represent a subject in an RDF triple.
Its function is identical to href, but the resource cannot be hyperlinked.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:swp=“http://www.semwebprogramming.org#“>

<body>

Here’s the story of a man named

<div about=“http://www.semwebprogramming.org#Ryan“

rel=“foaf:knows“

resource=“[swp:John]“>

<div rel=“foaf:knows“

resource=

“http://www.semwebprogramming.org#Matt“>Matt
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</div>

</div>

</body>

</html>

It results in triples:

<http://www.semwebprogramming.org#Ryan>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org#John>

<http://www.semwebprogramming.org#John>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org#Matt>

datatype

A compart URI, or CURIE, that represents a literal datatype.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:swp=“http://www.semwebprogramming.org#“>

<body>

Thank you for purchasing Semantic Web Programming on

<span about=“http://www.semwebprogramming.org#Book“

property=“dc:date“

datatype=“xsd:date“>2009-05-02

</span>

</body>

</html>

It results in triples:

<http://www.semwebprogramming.org#Book>

<http://purl.org/dc/elements/1.1/date>

“2009-05-02“^^xsd:date

typeof

A white space–separated list of CURIEs that specify one or more RDF types
that apply to the subject of the current triple.

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xmlns:cyc=“http://www.cyc.com/2003/04/01/cyc/“>

<body>
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Matt Fisher wishes he had a killer chopper like

<a about=“http://www.semwebprogramming.org#Matt“

typeof=“foaf:Person cyc:AdultMalePerson

cyc:HomoGenus“

rel=“foaf:knows“

href=“http://www.semwebprogramming.org#Andrew“>

Andrew</a>

</body>

</html>

It results in triples:

<http://www.semwebprogramming.org#Matt>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.cyc.com/2003/04/01/cyc/HomoGenus>

<http://www.semwebprogramming.org#Matt>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.cyc.com/2003/04/01/cyc/AdultMalePerson>

<http://www.semwebprogramming.org#Matt>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>

<http://www.semwebprogramming.org#Matt>

<http://xmlns.com/foaf/0.1/knows>

<http://www.semwebprogramming.org#Andrew>

Blank Nodes
Based on its roots in RDF, RDFa has full support of blank nodes. In fact, an
RDFa parser should not only guarantee that the creation of blank nodes is
unique within a given document but that any implicit blank nodes will not
clash with explicitly named blank nodes declared in a document. For example,
creating RDFa for two FOAF people who know each other could look like:

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“>

<body>

<div typeof=“foaf:Person“>Matt

<div property=“foaf:firstName“>Matt</div>

<div property=“foaf:family name“

content=“Fisher“/>

<div rel=“foaf:knows“

resource=“[ :bNode1337]“>knows

<span property=“foaf:firstName“>Andrew</div>

<span rel=“foaf:interest“

resource=“http://www.w3.org/2001/sw/“/>
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</div>

</div>

</body>

</html>

It should produce the following triples:

:bnode0

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://xmlns.com/foaf/0.1/Person>

:bnode0

<http://xmlns.com/foaf/0.1/firstName>

“Matt“

:bnode1

<http://xmlns.com/foaf/0.1/interest>

<http://www.w3.org/2001/sw/>

:bnode1

<http://xmlns.com/foaf/0.1/firstName>

“Andrew“

:bnode0

<http://xmlns.com/foaf/0.1/knows>

:bnode1

:bnode0

<http://xmlns.com/foaf/0.1/family name>

“Fisher“

The RDFa specification isn’t exactly clear as to whether or not the same
blank node identifiers should be used (e.g., starting with :bNode1337 but
resulting in :bnode1) but it is clear that uniqueness must be maintained.

Language Support
RDFa supports XML language tags as defined in the W3C XML Recommen-
dation (http://www.w3.org/TR/REC-xml/#sec-lang-tag). Language tags can
be dictated for an entire document or for a subset of triples. In the latter case,
it is possible to override earlier language tags.

Borrowing from the example above, the next example supports English with
one instance in U.S. English and two instances of British English:

<html xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“

xml:lang=“en“>

<body>
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<div typeof=“foaf:Person“>

<div property=“foaf:firstName“ xml:lang=“en-US“>

Matt</div>

<div property=“foaf:family name“

content=“Fisher“/>

<div rel=“foaf:knows“ resource=“[ :bNode1337]“

xml:lang=“en-GB“>knows

<span property=“foaf:firstName“>Andrew</span>

<span rel=“foaf:interest“

resource=“http://www.w3.org/2001/sw/“/>

</div>

</div>

</body>

</html>

Tools and Frameworks

Publishing semantic data isn’t limited to XHTML pages; there are other tools
and frameworks for hosting RDF or converting datatypes, relational databases,
iCalendar, Outlook, and Flickr metadata to RDF based on. Instead of describing
the details of each one, we present a list of possible applications and converters
that could be applicable for your data needs. One exception is the discussion
of xOperator, a tool for connecting to SPARQL endpoints over XMPP. This
list is far from complete but provides several good places to begin your
search.

RDF Transformational Tools
Table 11-1 lists applications that transform data from their native formats into
RDF, sometimes referred to as RDFizers. Visit http://simile.mit.edu/wiki/
RDFizers and http://esw.w3.org/topic/ConverterToRdf for more sources.

SPARQL Endpoints
SPARQL endpoints were covered in detail in Chapter 6, ‘‘Discovering Infor-
mation,’’ and provide an ideal medium for retrieving RDF data given its design
as an RDF query language. Typically, a data provider or data store provides
a SPARQL endpoint on top of its data as another mechanism for retrieving
semantic data. Table 11-2 lists some of the available tools that support SPARQL
endpoints.
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Table 11-1 Tools That Transform Native Formats into RDF

APPLICATION WEBSITE ¡?xmltex DESCRIPTION

Aperature http://aperture.
sourceforge.net/

Aperature is a framework for crawling,
extracting and indexing data from a variety of
formats, and allows developers to transform
both data and metadata to an RDF format.
There are currently over twenty extraction
classes ranging from JPEG and MP3 files to
PDF, Word, or Visio documents.
Out-of-the-box crawlers include iCal, IMAP,
and file systems.

Flickcurl http://librdf.
org/flickcurl/

Dave Beckett’s C-based implementation for
turning Flickr data such as photo metadata,
tags, and places into RDF.

Javadoc
RDFizer

http://simile.
mit.edu/wiki/
Javadoc RDFizer/

Built by the Simile team at MIT, this project
builds a doclet that will turn any
javadoc-compliant data into RDF. A doclet is
a program that implements the doclet API
transforming javadocs into any format of
your choosing. More information on doclets
can be found at http://java.sun.com/
javase/6/docs/technotes/guides/
javadoc/doclet/overview.html.

RDF123 http://rdf123.
umbc.edu/

This research project resulted in an
application that can ingest simple
spreadsheet information, such as those
using HTML table tags and
comma-separated files (CSVs), and return
the data in RDF. It was developed at the
University of Maryland, Baltimore County.

Torrent2RDF http://www.inf.
unideb.hu/
∼jeszy/
rdfizers/
torrent2rdf-
0.3.zip

Torrent2RDF provides foundational Java
code to read a torrent file or torrent URL and
extract the information as RDF. The output
currently goes to stdout but the GNU GPL
license gives developers the flexibility to
expand it as necessary.

Joseki Installation and Operation

As noted in Table 11-2, Joseki is one of the quickest ways to host a SPARQL
endpoint. This section will outline the steps to install and run Joseki 3.2, the
latest version at the time of this writing.
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Table 11-2 Applications That Support SPARQL Endpoints

APPLICATION WEBSITE DESCRIPTION

Virtuoso
Universal
Server

http://virtuoso.
openlinksw.com/

Built and supported by OpenLink Software,
the universal server is billed as a complete
data management solution. It handles XML,
RDF, ODB, and RDB data stores as well as
web services and an application server. A
subset of the functionality is provided in
OpenLink Virtuoso, an open source
implementation hosted on SourceForge
(http://sourceforge.net/projects/
virtuoso/). Virtuoso provides the SPARQL
endpoint for DBpedia that was explored in
Chapter 6, ‘‘Discovering Information.’’

Joseki http://www.
joseki.org/

Joseki was developed by HP labs, the same
team that developed Jena. Joseki is built on
top of ARQ, Jena’s multi-language query
engine that supports SPARQL in addition to
RDQL (RDF Query Language) and its own
ARQ language. Given its ability to support
any type of Jena Model, it is an ideal starting
point for standing up your own endpoint.

Begin by downloading and unzipping the file http://downloads.

sourceforge.net/joseki/joseki-3.2.zip. Directly off the newly installed
Joseki-3.2 directory is a lib subdirectory. Either add each of the jar files in
this lib directory to your CLASSPATH environment variable or you can pass
each jar file in on the command line when you launch Joseki. In the sample
below, Joseki is executed from the Joseki-3.2 directory via the latter method:

java -cp “lib/antlr-2.7.5.jar:lib/arq.jar:

lib/arq-extra.jar:

lib/commons-logging-1.1.jar:lib/concurrent.jar:

lib/icu4j 3 4.jar:lib/iri.jar:lib/jena.jar:

lib/jenatest.jar:lib/jetty-6.1.10.jar:

lib/jetty-util-6.1.10.jar:lib/joseki.jar:

lib/json.jar:lib/junit.jar:

lib/log4j-1.2.12.jar:

lib/lucene-core-2.3.1.jar:

lib/servlet-api-2.5-6.1.10.jar:

lib/slf4j-log4j12.jar:lib/stax-api-1.0.jar:

lib/wstx-asl-3.0.0.jar:

lib/xercesImpl.jar:lib/xml-apis.jar“

joseki.rdfserver joseki-config-example.ttl
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At this point, the output should resemble the following lines:

INFO [main] (Configuration.java:81) - ==== Configuration ====

INFO [main] (Configuration.java:164) - Loading : <joseki-config-

example.ttl>

INFO [main] (ServiceInitSimple.java:25) - Init: Example initializer

INFO [main] (ServiceInitSimple.java:25) - Init: Example2

INFO [main] (Configuration.java:100) - ==== Datasets ====

INFO [main] (Configuration.java:610) - New dataset: Books

INFO [main] (Configuration.java:621) - Default graph : books.n3

INFO [main] (Configuration.java:610) - New dataset: Dataset 1

INFO [main] (Configuration.java:621) - Default graph : Model(plain)

INFO [main] (Configuration.java:637) - Graph / named :

<http://example.org/name1>

INFO [main] (Configuration.java:637) - Graph / named :

<http://example.org/name2>

INFO [main] (Configuration.java:610) - New dataset: Test

INFO [main] (Configuration.java:621) - Default graph : <<blank node>>

INFO [main] (Configuration.java:102) - ==== Services ====

INFO [main] (Configuration.java:382) - Service reference: “books“

INFO [main] (Configuration.java:390) - Class name:

org.joseki.processors.SPARQL

INFO [main] (SPARQL.java:58) - SPARQL processor

INFO [main] (SPARQL.java:94) - Locking policy: multiple reader, single

writer

INFO [main] (SPARQL.java:115) - Dataset description: false // Web loading:

false

INFO [main] (Configuration.java:488) - Dataset: Books

INFO [main] (Configuration.java:382) - Service reference: “sparql“

INFO [main] (Configuration.java:390) - Class name:

org.joseki.processors.SPARQL

INFO [main] (SPARQL.java:58) - SPARQL processor

INFO [main] (SPARQL.java:104) - Locking policy: none

INFO [main] (SPARQL.java:115) - Dataset description: true // Web loading:

true

INFO [main] (Configuration.java:104) - ==== Bind services to the server

====

INFO [main] (Configuration.java:521) - Service: <books>

INFO [main] (Configuration.java:521) - Service: <sparql>

INFO [main] (Configuration.java:106) - ==== Initialize datasets ====

INFO [main] (Configuration.java:122) - ==== End Configuration ====

INFO [main] (Dispatcher.java:122) - Loaded data source configuration:

joseki-config-example.ttl

INFO [main] (?:?) - Logging to via org.mortbay.log.Slf4jLog

INFO [main] (?:?) - jetty-6.1.10

INFO [main] (?:?) - NO JSP Support for /, did not find

org.apache.jasper.servlet.JspServle
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Direct your browser to http://localhost:2020 and you will see the page
as shown in Figure 11-2. Selecting the first link, Form for SPARQL queries on a
small books database, will show a simple SPARQL query that can be run against
a small RDF data set of book and title information. This data set is located in
Joseki-3.2/Data/books.n3 and is listed in joseki-config-example.ttl, the
parameter file passed to the JVM when Joseki was launched. The second link,
General purpose SPARQL processor, will display an input box for user queries
like those used in Chapter 6.

Figure 11-2 Joseki’s default web page

To change the RDF data sets behind Joseki, modify joseki-config-example

.ttl with data of your own choosing.

xOperator
xOperator isn’t a SPARQL endpoint itself, but rather provides a medium for
connecting to existing SPARQL endpoints. xOperator uses XMPP, a protocol
discussed in Chapter 9, ‘‘Combining Information,’’ and relies on the premise
that people have one or more trusted groups of friends, contacts, or associates.
One way people define these trusted groups is through their use of IM or
creating chat groups and contacts based on different levels of trust and
relationships. If some of these users had software agents (or intelligent agents)
that provided access to their owners’ data, then trusted individuals could freely
search and obtain information from those users in an automated fashion. The
inherent social network supports an environment of trust while the agents
enable fast information navigation, searching, and querying.

This section briefly discusses how to install and work with xOperator in
its current release, version 0.1. Note that there are stability issues with this
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tool but it is covered nonetheless so you can experiment with alternatives to
SPARQL endpoints.

Installation and Operation

After downloading and unzipping xOperator from http://xoperator

.googlecode.com/files/xOperator-0.1.zip, go to the installation’s root
directory and rename the xoperator.properties-dist file to xoperator.

properties. Then edit the file to add your XMPP account information as well
as the information for your agent (also called a proxy):

## your full jid, e.g. someuser@someserver.com

main username=justadummy@jabber.org

## the password for this account

main password=justadummypassword

## ***PROXY************

## if set to true, no proxy account is necessary and the

## main account is used for interaction

standalone=false

## enable inter-agent communication, not working properly

## at this moment.

p2penabled=false

## outcomment the following lines, in case you want to have

## a proxy and put standalone above on false

proxy username= justadummyproxy@im.flosoft.biz

proxy password= justadummyproxypassword

Next, start the proxy. There is a shell script for Unix/Linux and a batch file
for Windows, shown below:

start.bat

Once started, your XMPP client should display an agent contact based on
the proxy username text entered in xoperator.properties. If you send the
agent a ‘help’ message, you should get the following response (there are a few
misspellings in this version of xOperator):

7:26:03 AM: The agent understands the following commands:

query executes a simple query. for example: 'query select distinct....'

help lists information about the implementes commands

list ds List all the available datastore of this agent.

add ds adds a datastore to the configuration of the client.

use: add ds <name> <uri>

del ds removes a prviously defined data store from the
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system. usage del ds <name>

add template adds a template to the agent usage: add

template “<pattern>“ “<query>“. In the pattern section one

or more wildcards can be used via the * character, the

value of the wildcard can be adressed in the query by

inserting the position of the star, surrounded by four %-

symbols, for example %%2%% in the query adresses the second

wildcard in the pattern.

list templates Lists all the aiml templates in the system

del template deletes a previously stored aiml template,

usage: del template “<pattern>“

add ns adds a namespace defintion to the agents

configuration. namespaces defined herewith are

automatically added to the query if needed

del ns removes a namespace from the definition. Usage del

ns <name>

list ns lists all the defined namespaces

Example Query

At this point, we’re ready to try a sample SPARQL query. Reusing a query from
Chapter 6 (retrieving all of George Washington’s namesakes from DBpedia) is
a good place to start. However, we first tell our agent the endpoint of interest
through the following command:

add ds dbpedia uri=http%3A%2F%2Fdbpedia.org

Then, run the query with a second command:

query SELECT ?location WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label>

“George Washington“@en.

?location <http://dbpedia.org/property/namedFor> ?person

}

The agent responds with:

7:39:17 AM: Store dbpedia answered:

location

<http://dbpedia.org/resource/Grayson County%2C Kentucky>

<http://dbpedia.org/resource/Washington County%2C Idaho>

<http://dbpedia.org/resource/Washington County%2C Kentucky>

<http://dbpedia.org/resource/Washington Parish%2C Louisiana>

<http://dbpedia.org/resource/Washington County%2C Georgia>

<http://dbpedia.org/resource/Washington County%2C Minnesota>

<http://dbpedia.org/resource/Washington County%2C Ohio>

<http://dbpedia.org/resource/Washington Township%2C Clinton

County%2C Indiana>

<http://dbpedia.org/resource/Washington County%2C Utah>
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For the sake of simplicity, namespaces weren’t used but they are supported
in xOperator. With the example working, you can move on to bigger items like
templates and query scripts, which are described in detail in the doc folder off
the root directory of your xOperator installation.

FriendTracker in RDFa

Advancing the work seen in Chapter 10, ‘‘Aligning Information,’’ it’s time to
share our FriendTracker information with others on the Internet. However,
instead of publishing this data solely in a Semantic Web medium using
a SPARQL endpoint or a static web page without any semantic, machine-
readable information, this section will show an example of automatically
generating a web page in XHTML with RDFa embedded content.

Chapter 10 discussed a FriendTracker ontology upon which this sample
instance data is based:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix time: <http://www.w3.org/2006/time#> .

@prefix ftrack: <http://semwebprogramming.org/2009/ftracker#> .

@prefix : <http://semwebprogramming.org/2009/ftracker/example#> .

:Andrew rdf:type ftrack:Friend ;

ftrack:isFrom “Virginia“ ;

ftrack:hasEmailAddress “andrew@semwebprogramming.org“ ;

ftrack:isFrom “United States“ ;

ftrack:isNamed “Andrew“ ;

ftrack:hasPost :Post00123 .

:John rdf:type ftrack:Friend ;

ftrack:hasPic “http://www.semwebprogramming.org/images/john.png“ ;

ftrack:isFrom “Maryland“ ;

ftrack:isNamed “Johnny“ ;

ftrack:hasEmailAddress “john@semwebprogramming.org“ ;

ftrack:hasTitle “Head Honcho“ ;

ftrack:hasPost :Post00124 .

:Post00123 rdf:type ftrack:Post ;

ftrack:hasContent “When in the Course of human events

it becomes necessary ...“ ;

ftrack:hasTitle “All About Post00123“ ;

ftrack:occursAt :TimeSample1 .

:Post00124 rdf:type ftrack:Post ;

ftrack:hasTitle “One day at a time“ ;

ftrack:hasContent “I have a dream that one day this
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nation will rise up and live out the true meaning of

its creed: We hold these truths to be self-evident,

that all men are created equal“ ;

ftrack:occursAt :TimeSample2 .

:TimeSample1 rdf:type time:Instant ;

time:inXSDDateTime “2008-10-28T11:31:52“^^xsd:dateTime .

:TimeSample2 rdf:type time:Instant ;

time:inXSDDateTime

“2008-11-02T09:30:50+03:00,“^^xsd:dateTime .

:Matt rdf:type ftrack:Friend ;

ftrack:hasPic

“http://www.semweb.../images/matt.png“^^xsd:anyURI ;

ftrack:hasTitle “Engineer At Large“ ;

ftrack:isNamed “Matt“ ;

ftrack:hasEmailAddress “mfisher@semwebprogramming.org“ ,

“matt2@semwebprogramming.net“ ;

ftrack:hasStatus ftrack:Available .

This instance data is used as the input RDF to the abbreviated code that
follows. Note that while the directly writing HTML snippets to the Buffered-
Writer instance isn’t ideal, it is used here for simplicity and to focus on the use
of RDFa.

public class PublishRDFa {

// Write any isNamed property values

private void writeIsNamedProperty(Model model,

BufferedWriter w, Resource person) throws

IOException {

Property prop = model.getProperty(defaultOntNS,

“isNamed“);

if (person.hasProperty(prop)) {

w.write(“<tr>\n“);
w.write(“<th colspan=\“2\“

property=\“ftrack:isNamed\“>“);
NodeIterator names =

model.listObjectsOfProperty(person, prop);

while (names.hasNext()) {

RDFNode name = names.nextNode();

w.write(name.toString() + “ “);

}

w.write(“\n</th>\n“);
w.write(“</tr>\n“);

}

}
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// Write any hasEmail property values

private void writeHasEmailAddressProperty(Model model,

BufferedWriter w, Resource person) throws

IOException {

Property prop = model.getProperty(defaultOntNS,

“hasEmailAddress“);

if (person.hasProperty(prop)) {

w.write(“<tr>\n“);
w.write(“<td “ + tableCellParams + “>Email:</td>\n“);
w.write(“<td>“);

NodeIterator addrs =

model.listObjectsOfProperty(person, prop);

while (addrs.hasNext()) {

RDFNode address = addrs.nextNode();

w.write(“\n<div rel=\“ftrack:hasEmailAddress\“
href=\““ + address.toString() + “\“>“);

w.write(address.toString() + “ “);

w.write(“</div>\n“);
}

w.write(“</td>\n“);
w.write(“</tr>\n“);

}

}

public static void main (String args[]) {

PublishRDFa rdfaFactory = new PublishRDFa();

// Read in our data

Model model = rdfaFactory.readRDFInput();

// Open the output RDFa file and output a standard

// XHTML header

BufferedWriter rdfaWriter = null;

try {

rdfaWriter = rdfaFactory.writePreAction();

} catch (IOException e) {

e.printStackTrace();

}

// Cycle through any friend instances and build

// XHTML+RDFa syntax

Resource friendClass = model.getResource(defaultOntNS +

“Friend“);

ResIterator friendIter =

model.listSubjectsWithProperty(RDF.type, friendClass);

try {

while (friendIter.hasNext()) {
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Resource person = friendIter.nextResource();

rdfaWriter.write(“<div about=\““ + owner +

“\“ rel=\“foaf:knows\“>\n“);
rdfaWriter.write(“<div about=\““ + defaultPrefix +

“:“ + person.getLocalName() + “\“>\n“);
rdfaWriter.write(“<p/><table “ + tableParams +

“>\n“);

// Do we have any isNamed information?

rdfaFactory.writeIsNamedProperty(model,

rdfaWriter, person);

// Do we have any hasPic information?

rdfaFactory.writeHasPicProperty(model,

rdfaWriter, person);

// Do we have any hasStatus information?

rdfaFactory.writeHasStatusProperty(model,

rdfaWriter, person);

// Do we have any hasEmailAddress information?

rdfaFactory.writeHasEmailProperty(model,

rdfaWriter, person);

// Do we have any isFrom information?

rdfaFactory.writeIsFromProperty(model,

rdfaWriter, person);

rdfaWriter.write(“</table>\n“);
rdfaWriter.write(“</div>\n“);
rdfaWriter.write(“</div>\n\n“);

}

writePostAction(rdfaWriter);

} catch (IOException e) {

e.printStackTrace();

}

}

}

The code acts like an agent for Ryan, inserting statements that he knows
each of the people in the FriendTrack instance data. The resulting XHTML will
look something like this abridged output:

<?xml version=“1.0“ encoding=“utf-8“?>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML+RDFa 1.0//EN“

“http://www.w3.org/MarkUp/DTD/xhtml-rdfa-1.dtd“>

<html version=“XHTML+RDFa 1.0“

xmlns=“http://www.w3.org/1999/xhtml“

xmlns:foaf=“http://xmlns.com/foaf/0.1/“
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xmlns:owl=“http://www.w3.org/2002/07/owl#“

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#“

xmlns:ftrack=

“http://semwebprogramming.org/2009/ftracker#“

xmlns:smp=“

http://semwebprogramming.org/2009/ftracker/example#“

xmlns:xsd=“http://www.w3.org/2001/XMLSchema#“>

<head>

<base href=“smp:Ryan“/>

<title>Sample RDFa page - Friend Tracker</title>

</head>

<body>

<div about=“smp:Ryan“ rel=“foaf:knows“>

<div about=“smp:Andrew“>

<p/><table style=“border: 5px solid black; width:

500px;“>

<tr>

<th colspan=“2“ property=“ftrack:isNamed“>Andrew

</th>

</tr>

<tr>

<td style=“width: 23%;“>Email:</td>

<td>

<div rel=“ftrack:hasEmailAddress“

href=“andrew@semwebprogramming.org“>

andrew@semwebprogramming.org </div>

</td>

</tr>

<tr>

<td style=“width: 23%;“>Origin Location(s):</td>

<td>

<div rel=“ftrack:isFrom“

href=“United States“>United States

</div>

<div rel=“ftrack:isFrom“

href=“Virginia“>Virginia </div>

</td>

</tr>

</table>

</div>

</div>

<div about=“smp:Ryan“ rel=“foaf:knows“>

<div about=“smp:Matt“>

<p/><table style=“border: 5px solid black; width:

500px;“>

<tr>

<th colspan=“2“ property=“ftrack:isNamed“>Matt

</th>
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</tr>

<tr>

<td style=“width: 23%;“>Picture:</td>

<td>

<div rel=“ftrack:hasPic“><img alt=“none“ src=“

http://www.semweb.../images/matt.png“/>

</div>

</td>

</tr>

<tr>

<td style=“width: 23%;“>Online Status:</td>

<td rel=“ftrack:hasStatus“

href=“http://semwebprogramming.net#Available“>

Available

</td>

</tr>

<tr>

<td style=“width: 23%;“>Email:</td>

<td>

<div rel=“ftrack:hasEmailAddress“

href=“mfisher@semwebprogramming.org“>

mfisher@semwebprogramming.org </div>

<div rel=“ftrack:hasEmailAddress“

href=“matt2@semwebprogramming.net“>

matt2@semwebprogramming.net </div>

</td>

</tr>

</table>

</div>

</div>

<div about=“smp:Ryan“ rel=“foaf:knows“>

<div about=“smp:John“>

<p/><table style=“border: 5px solid black; width:

500px;“>

<tr>

<th colspan=“2“ property=“ftrack:isNamed“>Johnny

</th>

</tr>

<tr>

<td style=“width: 23%;“>Picture:</td>

<td>

<div rel=“ftrack:hasPic“><img alt=“none“

src=“ http://www.semweb.../images/john.png“/>

</div>

</td>

</tr>

<tr>

<td style=“width: 23%;“>Email:</td>

<td>
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<div rel=“ftrack:hasEmailAddress“

href=“john@semwebprogramming.org“>

john@semwebprogramming.org </div>

</td>

</tr>

<tr>

<td style=“width: 23%;“>Origin Location(s):</td>

<td>

<div rel=“ftrack:isFrom“ href=“Maryland“>

Maryland</div>

</td>

</tr>

</table>

</div>

</div>

</body>

</html>

This example is a simple one; there is no exceptional processing here. The
code takes RDF input and embeds it into XHTML with the same namespaces
and properties as originally supplied. Any RDFa extraction agent will get the
same data. It is possible to imagine how the code could be embellished to
translate triples to another namespace, perform ontology alignment or act as
an information filter.

Existing HTML-generation frameworks, like those fashioned with PHP
and Perl, need only to verify their architectures produce XHTML-compliant
web pages to begin using RDFa. Their compliance can be tested at
http://validator.w3.org/. At that point, RDFa tags can be inserted for
semantic enrichment and data shared with others. RDFa extraction is available
from the W3C at http://www.w3.org/2007/08/pyRdfa/.

Summary

This chapter covered some of the biggest ways to share semantic data, both in
RDF and other formats, breaking out of the typical Semantic Web paradigm of
triple stores and manually-generated RDF files. The developers of microfor-
mats and other semantic markups had the right focus: leverage the millions
of pages of existing content but add machine-accessibility with minimal work
and invasiveness.

RDFa has strong potential, especially with the backing of the W3C. It is
unlikely that it will be the last technology for sharing semantics, as this
burgeoning area hasn’t seen the dust settle yet. Feel free to experiment with
various syntaxes, tools, and frameworks until you find the ones that meet your
needs.
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IV
Expanding Semantic Web

Programming

The Semantic Web is big. It’s fluid. It’s dynamic and
evolving. And today, it is at a point where early
adopters are identifying and exploiting the nuggets
in the field, and at the same time researchers are push-
ing the boundaries of the field. This book explores
the Semantic Web from a programmer’s perspective.
We pragmatically approach the technologies and con-
cepts behind the Semantic Web and identify along
the way what works and what doesn’t. This section
completes the journey through Semantic Web pro-
gramming by presenting useful extensions to Semantic
Web programming including semantic-based services
and spatial-temporal context, by exploring common
architectures, patterns, and best practices of the Seman-
tic Web, and by looking ahead to the future of the
Semantic Web.

Chapter 12 covers the subject of semantic web ser-
vices using the Semantic Web. Thus, the Semantic
Web includes services as well as data. Exposing ser-
vices via semantics offers machine readability to allow
automatic composition and negotiations. A number
of different technologies and protocols offer differ-
ent approaches. This chapter discusses Semantic Web
services such as the Web Service Modeling Ontology
(WSMO), Semantic Web Services Framework (SWSF)
and Semantic Annotations for WSDL and MDF. Each
technology is discussed in detail.
The chapter wraps up with an example of MDF.
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Chapter 13 explores spatial and temporal context in the Semantic Web. Most
information involves some notion of space and time. Both are often extremely
useful. Depending on the system, that notion, or context, may be assumed
or it may be explicitly expressed in the data itself. This chapter presents the
concept of spatial and temporal information and how it can be represented
in the Semantic Web. Example applications are presented that integrate both
a spatial and a temporal index into the Jena Semantic Web Framework in
order to provide efficient query performance when information is described
spatially and temporally.

Chapter 14 is a retrospective of sorts. It builds on everything that has been
covered so far in the book by presenting a series of architecture patterns for
constructing various Semantic Web applications. Each architecture is presented
and decomposed with important components and protocols identified and
discussed. Following the patterns, a series of commonly encountered issues is
presented along with the best-practice solutions to each.

Chapter 15 concludes the book by looking to the future, which is most cer-
tainly bright! The chapter focuses on four critical, evolving areas for Semantic
Web. First, the number, coverage, availability, and utility of ontologies are
all being advanced through efforts to create ontology sharing and develop-
ment technologies. Second, researchers are addressing the need to integrate
data and ontologies automatically using distributed queries and automatic
ontology alignment. The third area involves advances to reasoning capabili-
ties that address uncertain and fuzzy information and provide provisions for
integrating trust into the Semantic Web. The fourth and final area addresses
visualizing the rich and voluminous data that becomes accessible with the
Semantic Web.



C H A P T E R

12
Developing and Using Semantic

Services
‘‘Quality in a service or product is not what you put into it. It is what the client or

customer gets out of it.’’

—Peter F. Drucker

Semantic Services (usually called Semantic Web Services, or SWS) are an
additional step beyond today’s web services, much like the Semantic Web itself
is an extension of the original World Wide Web. Web services describe those
services that support the traditional SOAP-based or RESTful architectures.

There exist thousands of traditional web services today. However, the
ability to integrate and combine them into useful mash-ups requires extensive
manual work. The developer must examine each service for its value or
semantics and then determine how to extract that value through the correct
syntax and protocol. This work severely limits the complexity of mash-ups
using traditional web services. Most mash-ups limit the integration to a handful
of services, such as Amazon, YahooMaps, or GoogleMaps. In addition, there
is limited ‘‘contractual agreement’’ on the various web service interfaces.
Interfaces can be modified or removed by their providers at any time, and
developers who use these services may never know that changes have taken
place until their dependent applications no longer work. This situation makes
mash-ups brittle and vulnerable to a change in any of the underlying services.

Analogous to semantic information, SWS directly addresses these limitations
by exposing a uniform, machine-readable way to interoperate with a web
service—a Semantic Web Service.

SWS enables dynamic machine processing for discovery, invocation, nego-
tiation, and composition of web services to achieve some end goal for users.
Order-processing workflow, from order creation to final delivery, is a popu-
lar example. Today, workflow requires complex frameworks, such as those

421
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based on an enterprise service bus (ESB) or the sometimes-vague notion of a
service-oriented architecture (SOA), as well as a high level of human interven-
tion to properly construct the flow of data. The inability of service users to take
advantage of a service provider’s competitive edge (shortest response times,
greatest mean time between failures, largest client user base) to dynamically
choose one service over another is another disadvantage of traditional web
services. Establishing services that are accessible via the Web is just a begin-
ning step; the next challenge is capitalizing on these services and the data they
provide to produce more meaningful data in a machine-accessible way.

This chapter focuses on some of the major technologies being proposed
and used today. SWS is an evolving area where the balance of expressivity
and usefulness hasn’t been fully settled. We first examine the attributes of a
Semantic Web Service and then examine three proposed solutions: Semantic
Markup for Web Services (OWL-S), Web Service Modeling Ontology (WSMO),
and Semantic Annotations for WSDL and XML Schema (SAWSDL). Each holds
some insights into the challenge of SWS, and none of them has become the
clear, uncontested winner in this field. Most likely SWS will continue to be
refined and tweaked into the future. These three technologies form a path
to understanding SWS. You can use them now because they address some
of the needs previously mentioned; however, realize that the landscape is
constantly changing. Like the Semantic Web, Semantic Services benefit from
participation; the more participation, the more value.

In this chapter, you:

Learn the fundamental components and value of Semantic Web Services

Explore OWL-S, WSMO, and SAWSDL

Investigate a sample SAWSDL service

Background

Presenting a single definition of a web service is difficult since there are many
perceptions behind what precisely constitutes a web service. The W3C pub-
lished a note (http://www.w3.org/TR/ws-gloss/) as part of its Web Services
Architecture that includes the following definition:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction with
other Web-related standards.
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This definition does not cover RESTful web services, but if you focus on
the first sentence, it fits the bill: A web service is a software system designed
to support interoperable machine-to-machine interaction over a network. A
service must do something as part of this interaction: ingest, provide, or
transform data, or possibly trigger an event, to name a few examples. A web
service exists to provide a service.

N O T E Not all web service infrastructures use WSDL, but those systems that do
utilize WSDL are generally considered to be part of a web service infrastructure.

The main issue with traditional web services is that while they specify the
syntax of a service, they completely lack any semantics about their operations.
In other words, they can declaratively list information about their required
inputs, outputs, and how to handle communications. Yet it can be impossible
to tell what data or data operations a web service provides solely based on its
syntax. For example, a Bear News web service WSDL might specify a method
that takes a dateTime parameter as input and returns a list of headlines as
string types. Are these headlines about general news events, or are they
the latest news about bears? Likewise, two services could be described very
differently yet return similar data. As we have stated in previous chapters,
semantics enrich our syntax with meaning.

The secondary issue with web services is that they don’t support enough
machine automation. While developers can code web services and deploy
them in a Tomcat container, for example, it is incumbent upon the developers
to utilize a service’s endpoint in the application code or publish it to some
registry, possibly using Universal Description, Discovery and Integration
(UDDI). It is incumbent upon the developers to take the output of one web
service (or other provider) and pass it as input to another web service (or other
consumer)—a process known as service chaining, service choreography, or service
composition. It is incumbent upon the developers and IT community to manage
and maintain working web service frameworks on a daily basis.

Figure 12-1 shows the abridged lifecycle of a web service, focusing on those
steps that benefit from semantic enrichment.

Starting with the requirement or the need for a web service, a new service is
created. Services ideally go through a refinement loop whereby additional ser-
vices that provide some sort of useful data are discovered, negotiated with, and
composed. Once the pieces are satisfactorily assembled, the web service begins
the process of calling these additional web services and ingesting their data.
Besides the use of UDDI as a discovery mechanism and the request/response
process, these steps require manual intervention and constant maintenance
over the long term.
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Discovery Negotiation

Additional
Web

Services

Error
Handling

Monitoring

Form Request

Receive Response

Requirement / Need

Composition

Invocation

Figure 12-1 Web service lifecycle

The following sections break down the major steps illustrated in Figure 12-1:
discovery, invocation, negotiation, error handling, monitoring, and compo-
sition.

Discovery
Services that could go to some set of well-defined information servers to
self-register, inquire about other available services (including those that pro-
vided the same functionality as the inquiring service), or traverse a global
network of service registrations would be ideal. Software agents are well
suited for this role of discovery. This information would give a semantic
service the data it needed to know when and how to register itself, under
what topics/headings it should be included and organized, and where to find
metadata about the service. Existing technologies aren’t closing the gap. For
example, public UDDI registries aren’t as pervasive as originally hoped, and
the centralized nature of UDDI isn’t always well aligned to the decentralized
nature of the Internet.

Invocation
Invocation describes how a service is triggered or executed. This includes
knowing where the service resides (resolvable URIs detailed in a WSDL
obtained via UDDI, for example), what inputs it requires, and what outputs it
will return. However, a service may actually require a series of operations to
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achieve a desired outcome rather than a single method call. These steps could
be declaratively stored for machine interpretation as well as include added
semantics to determine when the steps should be called, how to interpret the
output, and how to handle irregular data, to name a few ideas.

Negotiation
Negotiation covers a broad set of ideas, from trust negotiation to contract
negotiation, with the latter covering the bartering and agreement of cost,
service-level agreements (SLAs), data quality, data quantity, and the like. By
embedding SWS, or the agents that run them, with negotiation algorithms,
it is possible to have services act in the best interests of their customers. For
example, say a user wants to get the latest weather every 5 to 10 minutes
unless there is an emergency situation, such as a hurricane, and then the user
wants weather information every 60 seconds. It is possible to use semantics
to capture this information and determine what available services can meet
this level of service as well as their associated cost, which can’t be done with
syntax alone.

Error Handling
Error handling could become much more robust with semantics. The idea of
expanding from a syntactic-based error code or exception when a service fails,
to providing a set of alternative services to call or procedures to execute is
ideal. SWS could also take advantage of failed conditions to obtain different
input (such as finding more recent data or additional data) and repeat service
calls, thereby gaining success without manual intervention.

Monitoring
Capturing information about the success and failure rates of service calls,
performance figures, data volume, and other indicators and semantically
tagging this information to provide a feedback loop for service improvement
cannot be done with syntax languages alone. In addition, larger, enterprise
service–based systems could incorporate these semantics and, with the help
of ontological mediation, present a fused view of service operations from a
high level.

Composition
Service composition is a popular and often-cited reason for using SWS.
To realize the goal of a global network of loosely coupled specialized
services, it is necessary to compose services into a workflow. Returning to the
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order-processing example, building an order requires a customer to purchase
an item, select a shipping option, and input payment—an oversimplification,
of course. The provider must reserve, find, and package the item, have it
shipped, and then process payment, all while managing the progress at
each step in the process. It is hard to reuse any of these operations if the
entire workflow is encapsulated in a monolithic system. SOAs boast of the
ability to provide these frameworks, but the services and the infrastructure
require regular specialized maintenance by skilled personnel. With SWS,
the operations of such architectures could scale beyond enterprise networks
while reducing the dependency on human intervention at the same time.
Specifically, software agents rely on declarative semantics that enable them
to react to, monitor, adjust, and fulfill services that manually would require
many hours of information technology support.

Semantic Web Services burst onto the scene at the beginning of the
decade, with many publications and publicized joint efforts appearing around
2002–2004. They didn’t deliver all that was promised; however, they continue
to attract strong academic research. The next sections will explore OWL-S,
the Web Service Modeling Ontology (WSMO), and Semantic Annotations for
WSDL and XML Schema (SAWSDL). Note the strong use of WSDL and other
standards in all of these technologies. This reuse strengthens the notion that
SWS uses evolutionary designs based on what developers are building today
versus some out-of-touch revolutionary approach from scratch.

Implementing Semantic Services

Now we’ll examine three approaches to SWS. Each technology constructs
ontology statements to guide the semantics surrounding the outlined web
service life cycle. These solutions take the first step in outlining the key data
necessary to form a possible service that could discover, invoke, and monitor
a set of web services automatically. The ontologies differ not only in their
respective semantics but also in their expressivity and ease of integration with
related web services standards like WSDL.

Note that the ontologies express the operations of a service via semantics,
not just elements and attributes. Hence your application can use the semantic
techniques outlined in the book, such as searching, navigating, and queries,
to produce the correct match and operations on a desired service. This design
goes well beyond exact keyword matches that are presented without a context.
Using the power of SPARQL, your application could ask a precise service query
that expresses not only a service’s inputs and outputs but also its reliability,
privacy details, and the like. The query remains constrained only by the power
of the semantic description found in the available ontological instances or the
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level of available expressivity. However, as expressivity grows, so does its
code complexity. If the description is too complex, participation and adoption
become more of a challenge. Thus, the three solutions provide their own
insight as to the proper balance between expressivity and complexity.

Adoption of these ontologies and the creation of corresponding services still
remains largely unfulfilled. It remains to be seen whether these technologies
have produced the right balance or if they might be replaced by other
frameworks. In any case, it is important to understand these approaches
because, whether they succeed or fail, they help guide the way to better
managing the growing possibilities of SWS against the thousands of services
offered throughout the Internet.

Semantic Markup for Web Services

OWL-S 1.1 is a 2004 W3C Submission found athttp://www.w3.org/Submission
/OWL-S. Its name is not an acronym for OWL services but is shorthand for
Semantic Markup for Web Services. OWL-S is an upper ontology that is
represented by three high-level concepts. An updated version, 1.2, is available
from the DAML website (http://www.daml.org/services/owl-s/1.2/). This
section will focus on version 1.1, as it was the original basis for the W3C
Submission.

Figure 12-2 outlines the basic components implemented through OWL-S.
The three concepts to the right of the diagram exist as distinct ontologies
that address the semantics of a web service as connected to the main class,
Service. ServiceProfile outlines what the service does. ServiceGrounding
details how to access the service, while ServiceModel defines how the service
operates.

Service

ServiceProfile

ServiceModel

ServiceGrounding

presents

(what it does)

supports(how to access it)describedby

(how
it works)

Figure 12-2 A high-level view of OWL-S from the W3C OWL-S Submission
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ServiceProfile
ServiceProfile and its subclass Profile describe what a given service does.
As a SWS client searches the network for particular services, a Profile

provides the necessary data such that a client can determine whether or
not a service meets its needs. A Profile may include information such
as serviceParameters (referring to any sort of property about a service)
and serviceCategorys (a generic method for housing classification system
information that is not limited to OWL-S). The Profile class is defined in
http://www.daml.org/services/owl-s/1.1/Profile.owl. Figure 12-3 shows
the properties and references that are part of Profile.

Service Profile
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Figure 12-3 RDF view of a Profile from the W3C OWL-S Submission

ServiceModel
ServiceModel, and its subclass Process, enables potential clients to understand
how a service operates and how it should be used. It provides abstract details
such as parameters (with inputs and outputs as specific cases of parameters),
participants, and preconditions. It was designed to handle simple, one-step
services as well as service composition. The Process class is defined in
http://www.daml.org/services/owl-s/1.1/Process.owl.

ServiceGrounding
ServiceGrounding details a mapping from the abstract ServiceProfile and
ServiceModel classes into a concrete implementation, similar to a service
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binding. The only grounding realized for OWL-S 1.1 was WSDL 1.1 through
class WsdlGrounding since WSDL 2.0 wasn’t an accepted W3C Recommen-
dation at the time. ServiceGrounding included direct mapping properties
for inputs and outputs between an ontology and a WSDL in addition to map-
ping associated datatypes. WsdlGrounding is defined in http://www.daml.org/

services/owl-s/1.1/Grounding.owl.
All three of these classes are defined in a separate, fourth OWL file located at

http://www.daml.org/services/owl-s/1.1/Service.owl. OWL-S addresses
the service composition through the CompositeProcess class. This class gives
OWL-S the ability to execute web services in flexible ways such as in serial or
parallel steps as well as the use of conditions.

The mindswap group at the University of Maryland created the de facto
Java implementation of OWL-S, appropriately called the OWL-S API. This
API is no longer actively maintained through the university, yet it remains
a popular choice as an SWS implementation and is freely available through
Google Code (http://code.google.com/p/owl-s/).

Web Service Modeling Ontology

WSMO starts with a similar approach to OWL-S in detailing semantic
services ontologies. This technology extends beyond service description
ontologies to address the full requirements in addressing automated, complex
interactions with sets of web services. WSMO and its two counterparts, the
Web Service Modeling Language (WSML) and the Web Service Execution
Environment (WSMX), were submitted to the W3C for consideration in 2005
(http://www.w3.org/Submission/WSMO/, http://www.w3.org/Submission/

WSML/, and http://www.w3.org/Submission/WSMX, respectively). WSMO de-
tails four main components: ontologies, web service descriptions, goals, and
mediators. WSMO’s ontologies provide the classes and properties that link all
the WSMO concepts to one another in a WSMO implementation. Web service
descriptions provide the necessary information about services (both functional
and nonfunctional) around which a WSMO implementation can ground its
operations. Goals are what users expect to achieve through the use of WSMO
web services, and mediators can be thought of as the bridges across these
components (mapping ontologies together or connecting goals, for example).

WSMO is not based on OWL but has its own language called the Web
Service Modeling Language (WSML). WSML can be mapped to OWL-DL
constructs, RDF, or XML for maximum flexibility. A reference implementation
of WSMO, called the Web Service Execution Environment (WSMX), is avail-
able on SourceForge at http://sourceforge.net/projects/wsmx. It is briefly
discussed here.
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Building WSMX from the source is fairly straightforward and can be done
from within Eclipse or the command line (assuming Java 1.6 and Ant 1.7.0 or
greater). In this case, Eclipse will serve as the development environment.

Once the 0.5 distribution is downloaded and unzipped, you need to create
a new Java project based on the wsmx-0.5-src directory. Verify that your
ant classpath includes ant-wsmx.jar and the three necessary jax*.jars (set
via Window � Preferences � Ant � Runtime in Eclipse). A snapshot of the
classpath is shown in Figure 12-4.

Figure 12-4 The ant classpath for the WSMX project as configured in Eclipse

Create the core and necessary subcomponents through the default Ant build
target:

ant build.all.dist

Then execute the run target:

ant run

A series of web services, ontologies, goals, and mediators is loaded, and the
environment is ready for the deployment of SWS. The default management
portal is set to http://localhost:8081 and is managed through JMX MBeans
(Java Management Extensions Management Beans). A view of some of the
server components is shown in Figure 12-5.
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Figure 12-5 A web-based view of the WSMX Management Console

At this point, SWS can be developed and deployed in WSMX. Writing a
WSMX-compliant SWS takes some effort and includes:

The use of an existing WSDL-based web service or the creation of a ser-
vice if it doesn’t exist.

The creation of WSMO constructs to support the SWS.

An ontology that describes the selected web service.

A goal that specifies the object of the SWS.

A second ontology containing input instances that correspond to the
named goal.

Lowering and lifting adapters for service to conceptual transformations
and vice-versa. Lowering and lifting adapters are the mappings that are
used to go back and forth from WSMO to RDF or XML, for example.

More information on these steps is covered in the WSMX documentation
(http://www.wsmx.org/papers/documentation/WSMXDocumentation.pdf).
They are not covered here since the objective of this section is to present
an introduction to WSMO and provide readers with a starting point toward
development. Since the WSMO W3C submission, work continues on WSMO,
specifically the creation of WSMO-Lite and MicroWSMO. WSMO-Lite uses
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RDFS and SAWSDL to help realize the grounding of WSDLs to existing ontolo-
gies, and MicroWSMO covers semantic annotations in RESTful web services.

Semantic Annotations for WSDL

The final SWS framework is SAWSDL, originally an acronym for Semantic
Annotations for WSDL, but which now stands for Semantic Annotations for
WSDL and XML Schema. Like OWL-S, this W3C Recommendation, located
at http://www.w3.org/TR/sawsdl/, has an uncomplicated approach to SWS,
but unlike OWL-S and others, it does not force developers to use a particular
conceptual representation such as OWL. SAWSDL provides a generic method
of connecting WSDL objects, such as element declarations and type definitions,
to some conceptual model based in OWL, RDF, RIF, WSML, or some other
language. In addition, SAWSDL supports references to other artifacts (such
as lifting and lowering attributes, detailed shortly) that can map data from
a given element or attribute to the conceptual representation. In summary,
SAWSDL is focused on achieving interoperability. The SAWSDL schema is
limited to three simple attributes:

<xs:schema

targetNamespace=“http://www.w3.org/ns/sawsdl“

xmlns=“http://www.w3.org/ns/sawsdl“

xmlns:xs=“http://www.w3.org/2001/XMLSchema“

xmlns:wsdl=“http://www.w3.org/ns/wsdl“>

<xs:simpleType name=“listOfAnyURI“>

<xs:list itemType=“xs:anyURI“/>

</xs:simpleType>

<xs:attribute name=“modelReference“ type=“listOfAnyURI“ />

<xs:attribute name=“liftingSchemaMapping“ type=“listOfAnyURI“ />

<xs:attribute name=“loweringSchemaMapping“ type=“listOfAnyURI“ />

<xs:element name=“attrExtensions“>

<xs:complexType>

<xs:annotation>

<xs:documentation>This element is for use in WSDL 1.1 only.

It does not apply to WSDL 2.0 documents. Use in

WSDL 2.0 documents is invalid.</xs:documentation>

</xs:annotation>

<xs:anyAttribute namespace=“##any“ processContents=“lax“ />

</xs:complexType>

</xs:element>

</xs:schema>

modelReference is an annotation that informs an interpreter that the refer-
enced URI is a link to some semantic model that corresponds to the annotated
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WSDL object. The content, language, and syntax that belong to the URI are
inconsequential to SAWSDL. The liftingSchemaMapping attribute provides a
URI where the corresponding WSDL object is lifted from XML to a semantic
model, while the loweringSchemaMapping attribute reverses the operation,
lowering the semantic model into an XML format.

SAWSDL Example
Starting with a simple example, we will use an existing WSDL and create an
association between some operation, the operationname web service, to an on-
tology that defines some model object, such as a Request:

<wsdl:operation name=“operationname“

sawsdl:modelReference=“http://www.semwebprogramming.org#Request“>

<wsdl:input element=“input“/>

<wsdl:output element=“output“/>

</wsdl:operation>

We can similarly use modelReference to map parameter names:

<xsd:element name=“RequestService“>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=“itemCode“ type=“xsd:string“

sawsdl:modelReference=“http://www.semwebprogramming.org#Parm1“/>

<xsd:element name=“date“ type=“xsd:string“

sawsdl:modelReference=“

http://www.semwebprogramming.org#Parm2“/“/>

<xsd:element name=“qty“ type=“xsd:float“

sawsdl:modelReference=“

http://www.semwebprogramming.org#Parm3“/“/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

With this mapping, elements Parm1, Parm2, and Parm3 are enriched with
semantics (such as the specific references in our model ontology) that are
irrelevant to the WSDL itself yet provide disambiguation for machine-based
clients of this service. If you look at the following code, you’ll see that Request
is defined as the object of complexType with a URI and associates a lifting
operation that transforms Request elements into OWL via an XSLT:

<xsd:element name=“Request“>

<xsd:complexType

sawsdl:liftingSchemaMapping=

"http://semwebprogramming.org/Request2Ont.xslt“>

<xsd:sequence>
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<xsd:element name=“firstParam“ type=“xsd:string“/>

<xsd:element name=“secondParam“ type=“xsd:string“/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Sampling a section of Request2Ont.xslt, a SPARQL query is utilized to
gather the data from a backend knowledgebase to populate a Request object.
firstParam and secondParam provide the input needed for the query:

<lowering>

<sparqlQuery>

PREFIX semweb: <http://semwebprogramming.org/Request#>

SELECT ?request

WHERE {

?subject semweb:hasRequest ?request

}

</sparqlQuery>

</lowering>

This brief example shows one method to leverage existing technologies into
a semantic framework.

SAWSDL Tools
The code behind the previous WSDL and XSLT is based on SAWSDL4J, an
open-source API that provides Java objects as representatives for SAWSDL
documents. The following source code provides a quick dump of our
modelReferences (one) and its associated mapping messages:

// Get WSDL file

Definition def = SAWSDLUtility.getDefinitionFromFile

(new File(“wsdlfile.wsdl“);

// Get Port Types

Map portTypes = def.getPortTypes();

for (Object key:portTypes.keySet()){

PortType semanticPortType =

def.getSemanticPortType((QName)key);

System.out.println(“Porttype QName ->“ +

semanticPortType.getQName());

System.out.println(“Model References ->“ +

semanticPortType.getModelReferences() );

List operations = semanticPortType.getOperations();

for (Object operation : operations) {

System.out.println(“Operation ->“ +

((Operation) operation).getName());

}

}
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// Get Messages

Map messages = def.getMessages();

for (Object key:messages.keySet()){

Message semanticMessage =

def.getSemanticMessage((QName)key);

System.out.println(“Message QName ->“ +

semanticMessage.getQName());

Map parts = semanticMessage.getParts();

for (Object partKey : parts.keySet()) {

Part semanticPart =

semanticMessage.getSemanticPart((String) partKey);

System.out.println(“part ->“ + semanticPart);

System.out.println(“part model references ->“ +

semanticPart.getModelReferences());

}

}

SAWSDL4J is available at http://lsdis.cs.uga.edu/projects/meteor-s/
opensource/sawsdl4j/. Another API, Woden4SAWSDL, provides WSDL 2.0
parsing abilities that enable SAWSDL artifacts to be generated from the given
WSDL. It is available from http://lsdis.cs.uga.edu/projects/meteor-s/

opensource/woden4sawsdl/.
There are also SAWSDL editors such as Radiant (http://lsdis.cs.uga.edu/

projects/meteor-s/downloads/index.php?page=1) and WSMOStudio (http://
www.wsmostudio.org/). Both are plug-ins for Eclipse.

Summary

Although none of the three technologies that you learned about in this chapter
serve as a final answer to SWS, all three provide valuable insights into how
Semantic Web Services will advance in the future. Clearly, as web services
continue to gain critical mass, a solution beyond simple mash-ups will be
needed. The inspection of these approaches provides the insights necessary to
help get you there.

Semantic Web Services haven’t reached the pinnacle of interoperability
and automation that some advocates were touting several years ago. The
tools to support SWS are limited, and some frameworks, such as WSMO,
can require quite a bit of work to build the basics. Research continues at a
steady pace, and with the acceptance of SAWSDL as a W3C Recommendation,
additional implementations and extensions to these foundational languages
and architectures aren’t far away.





C H A P T E R

13
Managing Space

and Time
‘‘But my intellectual development was retarded, as a result of which I began to

wonder about space and time only when I had already grown up.’’

—Albert Einstein

Many modern software applications need to manage information about time or
space, and applications for the Semantic Web are no different. Such information
is called spatial or temporal if it relates to space or time, respectively, and
spatiotemporal if it involves both space and time. This chapter presents a
brief discussion of how software can manage spatiotemporal information and
then discusses some of the challenges facing these systems. Next you’ll learn
some strategies for developing appropriate RDF and OWL representations of
spatiotemporal data for your own applications. Finally, the chapter presents a
pair of coding examples to show how you can optimize your Semantic Web
systems for spatial and temporal data.

In this chapter, you will learn about:

Spatial and temporal software

Spatial and temporal data representations for the Semantic Web

Extending Jena to exploit spatial and temporal information

Space and Time in Software

Notions of space and time are intimately related to everything that happens
in the world because everything happens somewhere and some when. Almost
every software system is concerned with the spatiotemporal aspect of data to
some degree, though some deal only with the spatial or the temporal.

437
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For some applications, the connection to space and time is very obvious. A
package-tracking application, for example, clearly is designed to help answer
some of the following questions: Where is the package coming from? To where
is the package headed? When was it sent? When is it expected to arrive?
Where is it now? These sorts of questions all explicitly involve space and time.

However, different sorts of applications use space or time more implicitly,
more to contextualize an answer to a related query. Any system that maintains
information that can change must at some level deal with time, for instance,
and many questions include some assumptions of location as well. What
does the company’s organization chart look like? How much is the company
spending on shipping? Which printer is best for this print job? The answers to
these questions are not exclusively dependent on spatiotemporal data, but that
information must be considered in order to give the best answer. Organization
charts change over time, as do shipping costs and printer availability. In
addition, given a companywide network of printers, the best printer is not
necessarily the idlest one, but one that is also located at the same site as the
person who initiated the job. Similarly, if a company ships to or from different
warehouses, shipping costs may vary greatly from site to site depending on
shipping method, fuel costs, and so forth. Being able to bound queries into a
particular spatiotemporal region can be very useful.

Requirements about the data and the types of questions that will be asked
of it always direct the design of an application. Whether the spatiotemporal
aspect of a system is explicit or implicit can have significant impacts on the
way that information is represented and managed. However, regardless of
the application of the data, the concepts behind spatial and temporal data
are the same.

Spatial Information
In general terms, spatial information describes regions of space. It is within
these regions of space that entities of interest are located or where events of
interest occur. Practically speaking, however, what is meant by ‘‘regions of
space’’? That definition is vague because it can cover a wide variety of different
types of spatial information.

As examples, consider the following spatial descriptions: ‘‘the White
House,’’ ‘‘1600 Pennsylvania Avenue,’’ ‘‘the caldera of Olympus Mons,’’
and ‘‘latitude 42.359011, longitude -71.093512.’’ Each of these descriptions
defines a region in space, but they also serve to illustrate some of the important
challenges to keep in mind when dealing with spatial information.

The first challenge is ambiguity. Take the first two examples: ‘‘the White
House’’ and ‘‘1600 Pennsylvania Avenue.’’ Both of these expressions define
spatial regions. The first identifies a region by naming the structure that bounds
it, the second by defining the region relative to the nation’s road network.
However, neither of these descriptions defines a region unambiguously. To a
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person in the United States, ‘‘the White House’’ describes the residence of the
president of the United States at 1600 Pennsylvania Avenue in Washington,
D.C. However, in Kyrgyzstan, the term ‘‘the White House’’ describes the
residence of the president of that country, within the capital city of Bishkek.
Similarly, ‘‘1600 Pennsylvania Avenue’’ could mean the residence of the U.S.
president in Washington, D.C., but it could just as easily refer to an address
in St. Louis, Missouri, or Dallas, Texas, both of which also have streets named
Pennsylvania Avenue. This sort of ambiguity can be confusing even to humans
and can easily cause errant behavior when machines are left to interpret it.
Your design must combine software and data appropriately to unambiguously
describe regions in your application.

A similar issue is raised by the latitude/longitude example. One given
representation of a spatial region might be preferable to another equivalent
representation. This can lead to complexity when trying to share information
between systems that are designed for different purposes. For instance, the
location described by the latitude/longitude pair is that of the mailing address
of the Massachusetts Institute of Technology (MIT) at 77 Massachusetts Avenue
in Cambridge, Massachusetts. Even though the mailing address and the
latitude/longitude pair represent the same location, depending on whether
a system intends to plot the location on a map or to send a letter there, one
representation is more advantageous than the other. It is important to design a
representation for spatiotemporal data that best suits the operations required
of the data.

Another challenge is that of granularity, or resolution. Olympus Mons is
a mountain on the planet Mars; it is the tallest known mountain in the solar
system. At the top of the mountain is a depression, known as a caldera, that is 53
miles long and 37 miles across. This large region of space could reasonably be
represented as a point from the perspective of Earth, but from the perspective
of some future rover exploring that terrain, that type of representation would
be insufficient. The amount of precision and sophistication of a spatiotemporal
representation must be appropriate for the context in which that representation
will be used.

Representations of spatial data also range in complexity based on the
relevant frame of reference. A latitude/longitude system is a convenient way
of referring to points on the surface of a planet, such as Earth or Mars. However,
in either case, the latitude/longitude pair is only sufficient to describe surface
locations with respect to one planet or the other, not both. A software system
that managed the launching and landing of a spacecraft from MIT on Earth
to Olympus Mons on Mars would need a richer representation than simple
latitude/longitude pairs. More generally, the complexity of the representation
for a given set of spatial data depends on the complexity of both the spatial
region being described and the relevant frame of reference of that description.

Designers of spatial software systems must carefully choose a representation
that takes into consideration the type of spatial data used by the system and
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the way in which that information will be used. They should take care to
design an unambiguous representation that is flexible enough to support the
full richness of the available data, but that is also optimized for the tasks that
data will be used to perform. Without careful consideration of any of these
points, it can be difficult to adequately represent and share spatiotemporal
information.

Temporal Information
Just as spatial data describes regions in space, temporal data describe regions
in time. Within these regions of time, entities of interest can interact with each
other, and events of interest can occur. In some ways, temporal data is easier
to conceptualize than spatial data, because time is only a single dimension.
However, when designing a representation for temporal data, the fundamental
challenges remain the same.

While time itself is only a single dimension, descriptions of entities in time
require more complicated descriptions than a single point. As with space,
temporal descriptions can refer to a zero-dimensional instant, like the moment
you were born, a continuous period of time such as your lifespan, or a discrete
set of periods in time, like the concept Thursdays. In addition, in the field
of temporal databases, a distinction is drawn between two classes of time
data. The first is called valid time, and the second is transaction time. These
different types of temporal data have different characteristics and usually
require different techniques for their management.

The valid time for a particular fact is that span of time for which the fact is
true within the world modeled by the data. For example, consider a store that
recognizes diligent workers with an ‘‘Employee of the Month’’ award. If you
are the employee of the month for July, then from July 1 at 12:00 a.m. until July
31 at 11:59 p.m. the statement ‘‘You are the employee of the month’’ is valid.
Outside that range, either before or after, the statement is invalid.

Transaction time has less to do with the facts themselves so much as with the
current state of the information system that manages those facts. Transaction
time describes the time during which a given fact is a part of the current state
of the data model. For example, if the ‘‘Employee of the Month’’ award had
been decided at the end of June instead of July, and the store manager had
added that fact to her database on June 28, then that would be the beginning
of the transactional time bound for that fact. If the fact were ever deleted from
the database or replaced by a different fact, then that point would mark the
end bound of that fact with respect to transaction time.

It takes a different conceptual approach to query a knowledgebase that is
modeling information using valid time versus transaction time. Essentially,
valid time queries allow users to ask questions about the passage of time
within the world that is modeled by the data, and transaction time queries
allow users to ask questions about the state of the data model through time.
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Often it is valuable to be able to ask both kinds of questions. However, as
with anything else, the more capabilities built into a software system, the more
complicated that system must be.

Representing Spatiotemporal Data on the
Semantic Web

Now that you’ve seen some of the challenges that must be addressed by
different representations of spatiotemporal data, consider a few approaches
to the issue in RDF and OWL. The representation must be based on the nature
of the data and of the tasks your system will perform on it. With that in mind,
it is valuable to recall the distinction between explicitly spatiotemporal data
versus fundamentally non-spatiotemporal data that will be annotated with
spatiotemporal context. If the information your system manages is dates or
spatial regions, then your representation will focus on those. If your system
focuses on other types of information and just annotates it with spatial or
temporal values, then you first need a way to represent the spatiotemporal
information, but you also need a way of associating that extra component with
the bulk of the data.

Of course, before considering a new representation for spatial or temporal
data, you should try to draw on existing conventions. It’s often easier to find
something already created than to develop it from scratch, and as with infor-
mation on the Semantic Web in general, linking concepts together by reusing
ontologies makes it much easier to interchange information. OWL does not
include a standard representation for spatial data, and its support for describ-
ing time is limited to support for typed literal values. With typed literal values,
you can take advantage of the standard XML Schema Definition (XSD) date,
time, and dateTime types, but in some cases this is too limited a set of options.

While the OWL language’s support for time is limited to typed literals,
other representations for temporal data have been developed by members of
the Semantic Web community. One such example is OWL-Time, which has
been released by the World Wide Web Consortium (W3C), and is presently a
working draft.

N O T E More information about OWL-Time is available at http://www.w3.org/
TR/owl-time/.

OWL-Time includes the concept of a temporal entity, which can be
either instantaneous, which is called an instant, or of some duration, called
an interval. The duration of an interval is defined with an instance of
the DurationDescription class, and it can be bound by instants with the
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hasBeginning and hasEnd properties. The DurationDescription instance
uses predicates like weeks, days, hours, minutes, and seconds to spec-
ify the duration. A particular interval can be associated with multiple
DurationDescription instances, each of which should be equivalent to the
others. If an interval has the duration of a standard calendar unit, it can
be a member of the DateTimeInterval class, and it is described with a
DateTimeDescription instance. For example, ‘‘April 15’’ is an interval of 24
hours, but it also coincides with a date on the calendar. Therefore, that inter-
val should be considered a DateTimeInterval. These DateTimeIntervals can
be a day long, but they could also last a month, week, hour, minute, or
second. The DateTimeDescription also allows for the definition of instants.
Because an instant takes no time, it can never be exactly identified. The best
that can be done is to identify an interval within which that instant falls. In
OWL-Time, the inDateTime predicate is used to associate an instant with a
DateTimeDescription in just this way.

The following is an example of describing a night’s rest in OWL Time.

@prefix time: <http://www.w3.org/2006/time#> .

@prefix : <http://example.org/time#> .

# Person goes to sleep at :FallAsleepTime, and sleeps for

# 8 hours until :WakeUpTime

:NightsRest a time:TemporalEntity, time:Interval ;

time:hasBeginning :FallAsleepTime ;

time:hasEnding :WakeUpTime ;

time:hasDurationDescription [ a time:DurationDescription ;

time:hours “8“

] .

# :FallAsleepTime is 10:27 on September 20th.

:FallAsleepTime a time:Instant ;

time:inDateTime [ a time:DateTimeDescription ;

time:unitType time:unitMinute ;

time:month “9“ ;

time:day “20“ ;

time:hour “22“ ;

time:minute “27“ ;

time:second “0“ ;

time:timeZone “-PT5H“

] .

# :WakeUpTime is 6:27 on September 21st, 8 hours later

:WakeUpTime a time:Instant ;

time:inDateTime [ a time:DateTimeDescription ;

time:unitType time:unitMinute ;

time:month “9“ ;

time:day “21“ ;

time:hour “6“ ;

time:minute “27“ ;
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time:second “0“ ;

time:timeZone “-PT5H“

] .

The example describes a night’s rest of eight hours, beginning at 10:27 p.m.
on September 20 and ending the next morning at 6:27 a.m. The precise instant
of falling asleep and waking up is not defined in this example. Because the
unitType of the DateTimeDescriptions is time:minute, only the fact that those
instants fell within the minutes of 10:27 p.m. and 6:27 a.m., respectively, is
preserved. OWL-Time also supports using XSD dateTime values directly, for
those cases when succinctness is a priority. For instance, you can define an
instant with an XSD dateTime value using the inXSDDateTime predicate for
example:

@prefix time: <http://example.org/time#> .

@prefix : <http://example.org/time> .

:OneMomentInTime a time:Instant ;

:inXSDDateTime “2008-09-21T22:27:00-5:00“ .

This snippet is an alternate representation of the instant within the minute
of 10:27 p.m. on September 20. If you need to express simple dates, times, and
durations, you should consider using OWL-Time.

Work has been done in developing a way to express spatial regions on the
Semantic Web as well. The GeoRSS project has created an abstract represen-
tation for spatial information so that it can be embedded into a Really Simple
Syndication (RSS) feed.

N O T E More information about GeoRSS is available at http://georss.org/. RSS
is an initialism for Really Simple Syndication, but it has historically also been an ini-
tialism for RDF Site Summary. More information about the history of RSS is available
at http://cyber.law.harvard.edu/rss/rssVersionHistory.html.

The GeoRSS model supports the concepts of points, lines, boxes, and
polygons. All of the points are latitude/longitude pairs according to the World
Geodetic System from 1984 (WGS84). WGS84 is a standard way of representing
points on the surface of the earth, and it is widely used in part because
it is the encoding used by the Global Positioning System (GPS). GeoRSS’s
preferred representation for latitude/longitude pairs is a space-separated list
of decimal-degreed values, for instance: ‘‘38.893754 -77.072568,’’ or ‘‘42.390438
-71.148705,’’ or for a collection of points, ‘‘38.893754 -77.072568 39.184543
-76.850706 42.390438 -71.148705.’’ Collections of points are used to define
multipoint regions like lines, boxes, and polygons.
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DECIMAL DEGREES

Decimal degrees, like those used by GeoRSS, are a common way of
conveniently representing latitude and longitude values as pairs of real-valued
numbers. There is a straightforward translation between decimal degrees and
standard latitude/longitude representation. Because there are 60 minutes in a
degree of arc and 60 seconds in a minute of arc, to convert from a standard
representation like 40◦ 44’ 55’’ N, 73◦ 59’ 7’’ W, to decimal degrees, simply
divide the minutes by 60 and the seconds by 3600 to get the fractional portion
of the degree. Add the fractional portion to the integer portion of the degree to
generate the full decimal degree representation. By convention, positive
latitudes are north of the equator and negative latitudes are south; positive
longitudes are east of the prime meridian, and negative longitudes are west.

The latitude and longitude above, therefore, would be:

40 + 44/60 + 55/3600 = +44.748611

73 + 59/60 + 7/3600 = -73.985278

This pair, 40.748611, -73.985278, is the decimal degree representation of the
Empire State Building in New York City.

Conceptually GeoRSS is a very convenient framework, but it can sometimes
be difficult to work with this data in RDF because the values are concatenated
as strings. In order to use this data, these strings must be parsed and the
values extracted. For this reason, many Semantic Web systems use the Basic
Geo Vocabulary.

N O T E More information about the Basic Geo Vocabulary is available at
http://www.w3.org/2003/01/geo/.

The Basic Geo Vocabulary is a simple RDF encoding for WGS84 latitude
and longitude values. It defines a Point class as well as lat, long, and alt

predicates to describe a Point’s location in terms of latitude, longitude, and
altitude.

If standard spatiotemporal representations like OWL-Time or GeoRSS and
the Basic Geo Vocabulary are not a good fit for your application, then you
can extend them or create your own. It is still always a good idea to ensure
that even when it is not practical to use or extend an existing representation,
you try to develop the new one in such a way as to be compatible with the
existing representations. That makes it easy for data to be shared between
your application and others’.

After you’ve decided on a representation for the spatiotemporal information,
it remains to associate that component with the rest of the data in your system.
For entities that are inherently spatiotemporal, this can be a simple process.
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Take the example of a package-tracking application. A package is sent through
a distribution network owned by a shipping company. At any point from the
time the package is shipped until it arrives, it is either at a package depot or
en route to the next one. Each time it arrives at a depot, it is scanned. In such a
case, you could model it as shown in the following code:

@prefix time: <http://www.w3.org/2006/time#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84 pos#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix : <http://example.org/package#> .

:Warehouse a owl:Class .

:Scan a owl:Class .

# This describes a package warehouse in Arlington, Virginia

:Warehouse1 a :Warehouse ;

:name “Arlington Warehouse“ ;

:locatedAt [ a geo:Point ;

geo:lat “38.893754“ ;

geo:long “-77.072568“

] .

# This describes a package warehouse in Columbia, Maryland

:Warehouse2 a :Warehouse ;

:name “Columbia Warehouse“ ;

:locatedAt [ a geo:Point ;

geo:lat “39.184543“ ;

geo:long “-76.850706“

] .

# This describes a package warehouse near Boston, Massachusetts

:Warehouse3 a :Warehouse ;

:name “Boston Warehouse“ ;

:locatedAt [ a geo:Point ;

geo:lat “42.390438“ ;

geo:long “-71.148705“

] .

# A package with package ID 1111, presumably other information about

# the package exists elsewhere

:Package1

:id “1111“ .

# A package with ID 2222

:Package2

:id “2222“ .

# A package scan, indicating that package 1 was in Arlington at 9:30 AM

# on September 24th, 2008

[] a :Scan ;

:package :Package1 ;
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:location :Warehouse1 ;

:time [ a time:Instant ;

time:inXSDDateTime “2008-09-24T09:30:00-5:00“

] .

# A package scan, indicating that package 1 was in Columbia at 10:30 PM

# on September 24th, 2008

[] a :Scan ;

:package :Package1 ;

:location :Warehouse2 ;

:time [ a time:Instant ;

time:inXSDDateTime “2008-09-24T22:30:00-5:00“

] .

# A package scan, indicating that package 1 was in Boston at 6:08 PM

# on September 25th, 2008

[] a :Scan ;

:package :Package1 ;

:location :Warehouse3 ;

:time [ a time:Instant ;

time:inXSDDateTime “2008-09-25T18:08:00-5:00“

] .

In the code below you can see one possible representation for spatiotemporal
information. The locations are represented using the Point class from the Basic
Geo Vocabulary, and the scan times are represented using OWL-Time con-
structs. Then time and space are tied together using Scan instances. The Scans
are blank nodes, and they are used in this case to represent a relationship with
an arity of four (that is, a relationship of a higher order than the two of a binary
relationship). This use of blank nodes is described in more detail in Chapter
3, ‘‘Modeling Information.’’ With a representation such as this, a system could
easily track a package’s progress through the distribution network.

For example, consider the following SPARQL query. When issued to an end-
point containing the package data, it will return the scan time and warehouse
information (name, latitude, and longitude) for package 1111.

PREFIX time: <http://www.w3.org/2006/time#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84 pos#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX pack: <http://example.org/package#>

SELECT ?name ?lat ?lon ?time

WHERE {

?scan a pack:Scan ;

pack:package [ pack:id “1111“ ] ;

pack:location [ a pack:Warehouse ;

pack:name ?name ;

pack:locatedAt [ a geo:Point ;

geo:lat ?lat ;
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geo:long ?lon

]

] ;

pack:time [ a time:Instant ;

time:inXSDDateTime ?time

]

}

Another type of application sees a collection of non-spatiotemporally ori-
ented information that needs to be annotated with spatiotemporal data. In this
case, reification can present a good strategy. Suppose that a shipping company
has an organization chart detailing the executive structure of the company, as
shown in Figure 13-1.

CEOChairman of
the Board

VP:
Marketing

VP: Human
Resources

VP:
Shipping

Operations

R&D

CFO

Figure 13-1 Organization chart for ACME Shipping

However, further suppose that in October of 2006, the organizational struc-
ture of the company changed. The Research and Development department of
Shipping was restructured into its own independent division, and the position
of Director of R&D was similarly changed to Vice President, reporting directly
to the CEO. How could this fact be represented in OWL? The following code
shows a portion of the chart from Figure 13-1:

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix time: <http://www.w3.org/2006/time#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> .

@prefix : <http://example.org/organization#> .

:Company a owl:Class .

:Position a owl:Class .

:reportsTo a owl:ObjectProperty .
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:CEO a :Position .

:VPShipping a :Position .

:DirectorRandD a :Position .

:AcmeShippingCompany a :Company ;

:hasPosition :CEO , :VPShipping , :DirectorRandD .

:VPShipping :reportsTo :CEO .

:DirectorRandD :reportsTo :VPShipping .

This snippet describes two classes and one predicate: Company, Position,
and reportsTo, respectively. It then describes the portion of the organization
relating to research and development, with the DirectorRandD reporting to
the VPShipping, and that vice president reporting to the CEO of the company.
This is the state of affairs before the reorganization. The following code
shows one approach to representing the company’s structure after the October
reorganization.

:AcmeShippingCompany :hasPosition :VPRandD .

:VPRandD :reportsTo :CEO .

:Reorganization a owl:Class .

:October2006Reorg a :Reorganization ;

:removed ([ a rdf:Statement ;

rdf:subject :AcmeShippingCompany ;

rdf:predicate :hasPosition ;

rdf:object :DirectoryRandD

]

[ a rdf:Statement ;

rdf:subject :DirectorRandD ;

rdf:predicate :reportsTo ;

rdf:object :VPShipping

]) ;

:added ([ a rdf:Statement ;

rdf:subject :AcmeShippingCompany ;

rdf:predicate :hasPosition ;

rdf:object :VPRandD

]

[ a rdf:Statement ;

rdf:subject :VPRandD ;

rdf:predicate :reportsTo ;

rdf:object :CEO

]) ;

:effective [ a time:Instant ;

:inXSDDateTime “2006-10-15T00:00:00-5:00“

] .
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This section of code shows the change of the reorganization—the cre-
ation of the new position of Vice President for Research and Development
(VPRandD in the section) and the fact that that new position reports to the
CEO. The bulk of the code, however, is devoted to a description of the
effect of the reorganization in the form of a Reorganization class and
instance. October2006Reorg is an instance that is associated with two lists
and an OWL-Time Instant instance. The lists describe the statements of the
document that were removed and added, respectively, as a result of the reorga-
nization, and the effective predicate indicates when the reorganization took
effect.

In the previous code, reification is used to add temporal information to
data that is not temporally oriented. It is important to note it was possible
to enhance it with temporal data even though nothing about the way that
the organizational chart was represented suggests that it was designed to
accommodate that temporal information. Because reification allows for any
statement to be described, it is a very powerful and flexible mechanism for
adding temporal or spatial data to other information.

The flexibility that reification provides can come at a cost. While it makes
it possible to annotate nontemporal information with temporal descriptions,
reification, when used without special care, can significantly degrade the
performance of an application. From the point of view of RDF triples, reification
is a verbose way of expressing information. As shown, asserting that a
statement should be removed requires five statements: the removed statement
itself, the statement to declare the resource that is the object of the removed

assertion, and then finally the rdf:subject, rdf:predicate, and rdf:object

statements that define the statement to be removed. For triple stores, large
amounts of reifications can slow down query processing unless they are
specially optimized to handle reifications efficiently.

In addition, while reification makes temporal annotations possible, intro-
ducing temporal semantics to an application in this way is not sufficient to
introduce any functionality related to time. Using reification to introduce
temporal semantics in this way is tantamount to changing the underlying
information representation, and making such a change without corresponding
changes to queries and other software logic can lead to incorrect results. One
good approach to solving this problem is to use temporally aware queries or
program logic to generate a version of the underlying data that is consistent
for a particular given time. This model can then be queried using the original
queries. For example, if most applications are concerned only with the most
current organizational hierarchy, a preprocessing step could be used to gener-
ate a model that strips out the reification and represents the most up-to-date
structure of the organization.
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Spatial and Temporal Software with Jena

Now that you’ve seen different ways to model spatiotemporal data in RDF
and OWL, how can you work with this information efficiently in software?
Treating spatiotemporal information just like other data values can lead to
very inefficient system performance because of the nature of common queries.
This leads to specialized data structures and approaches for dealing with space
and time in software.

For example, in Table 13-1, consider a collection of addresses of restaurant
locations and their latitudes and longitudes.

Table 13-1 Records with Restaurant Location Information

STREET ADDRESS LATITUDE LONGITUDE

1013 Richmond Ave, Staunton VA 24401 38.138948 -79.048496

107 N Fayette St, Alexandria VA 22314 38.805835 -77.052437

1304 W Main St, Salem VA 24153 37.289828 -80.078373

13580 Foulger Sq, Woodbridge VA 22192 38.656298 -77.304462

14001 Jefferson Davis Hwy, Woodbridge VA 22191 38.649417 -77.261204

1961 Chain Bridge Rd, Tysons Corner VA 22102 38.919611 -77.226403

2901 Richmond Ln, Alexandria VA 22305 38.83146 -77.069674

6541 Backlick Rd, Springfield VA 22150 38.777264 -77.184649

707 Southpark Blvd, Colonial Heights VA 23834 37.247886 -77.388923

750 Independence Blvd, Virginia Beach VA 23455 36.864308 -76.132557

931 W Broad St, Richmond VA 23220 37.55045 -77.450162

Imagine that sales are low at a store, and the manager of that store is
wondering if his sales are being cannibalized by another location. He wants
to know which stores are within three miles of his own. This is a challenging
query to answer efficiently. Suppose you call the manager’s store the base
store. In order to answer this query, the system would need to calculate the
distance between the base store and every other store each time the query
was issued. This is potentially a very expensive operation, and it cannot be
effectively precomputed. As you can see in Figure 13-2, the results of the
query differ with respect to changes in both the search radius and the base
store. In order to answer this query without significant calculation at runtime,
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every store would have to compute a result for each combination of base store
and distance. This amount of work is infeasible even for reasonably sized
data sets.

Base store Base store

Base storeBase store

Query size: 3 miles

Query size: 3 miles

Query size: 5 miles

Query size: 5 miles

Figure 13-2 Spatial query results change based on both the center and the radius of the
search region

Temporal data presents similar challenges. Information systems must be
designed specifically in order to efficiently answer either transaction time or
valid time queries. In the organization chart example, you saw that reifica-
tion can be used effectively to associate temporal data with arbitrary sets of
RDF statements. However, without specially designing a system to answer
temporal queries, the only approach would be to reify every statement with
a timestamp. This is possible, but it would clutter the knowledgebase with a
great number of statements that are essentially just for bookkeeping and exac-
erbate the performance issues introduced by reification. Unless the application
requires all those timestamps, that information should be kept out of the main
knowledgebase.

Working with spatiotemporal data is challenging but by no means impos-
sible. Special data structures have been and are being developed to efficiently
answer some of the most common types of spatiotemporal queries. In this
section, you’ll see an example of how to take advantage of one such data
structure, a spatial index.
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Working with Spatial Data
While it is difficult to answer the spatial query about nearby restaurants
without a special data structure, a spatial index can be integrated into a Jena
model so as to make spatial queries efficient.

A spatial index is a special data structure that organizes information about
objects in space based on their locations so that spatial queries can be answered
efficiently. There are several algorithms typically used to index information
in this way. A common approach is to build a tree-based data structure that
partitions a region of space into smaller subsections. Each node in the tree
represents a region of space, and its children represent smaller regions within
the parent node. Each node also contains references to entities located within
that node’s region of space. Different algorithms use different criteria for
partitioning space or for assigning entities to nodes. These varied approaches
lead to different performance characteristics among spatial indices. In general,
however, spatial indices greatly reduce the amount of computation required to
answer queries like ‘‘find all entities within distance X of a reference location.’’

In order to answer that query, first the tree is traversed until the node
that would contain the reference location is found. Once that node has been
identified, the search algorithm steps back up the tree via parent nodes until
the parent node’s extent includes the search bounds. At that point, every entity
within the subtree of that parent node is compared to determine whether the
entity falls within the desired search region. Because the entities within the
spatial index are organized according to their locations, it is not necessary
to calculate the distances between every location at query time. Figure 13-3
shows a partitioning of the space on an island, with the entities marked as
points within the grid.

Spatial indices are data structures that can be implemented separately from
the main business logic of an application and distributed as libraries. One such
library is the JTS Topology Suite (JTS).

N O T E More information about the JTS Topology Suite is available at
http://tsusiatsoftware.net/jts/main.html.

The JTS provides an API for developing spatial applications, and it includes
an implementation of a spatial index called a quad tree. A quad tree is a
spatial index in which each node represents a spatial region that is recursively
subdivided into four quadrants, as shown in Figure 13-3. This recursion
continues where necessary until a small number of node items are left in each
square. In Figure 13-3, for example, any region with more than three points has
been subdivided so that there is never a region with more than three points.
In the following software example, a Jena model is enhanced with a quad tree
to enable it to efficiently answer spatial queries.
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Figure 13-3 A spatial index partitions space and stores data according to its location

N O T E The JTS Topology Suite uses Cartesian coordinates as opposed to
latitude/longitude values. A Cartesian coordinate system describes locations on a
flat surface, and latitude and longitude values describe locations along a collection
of ellipses that represent the surface of the earth. A major impact of this
difference is that on a Cartesian plane, the distance of one unit is the same
everywhere, but the same is not true for latitude and longitude values. With
latitude and longitude, the actual distance of a degree varies greatly depending on
where the measurement is taken. For instance, at the north and south poles, all of
the longitudinal lines converge. The distance between each degree line at those
points is much less than it is near the equator. In spite of this issue, this example
uses the JTS with latitude and longitude values for simplicity’s sake. This, however,
is not strictly correct.

Example: Spatial Queries
Consider the restaurant locations that were included in Table 13-1. If that
information were encoded as RDF, how could it be ingested and indexed
in such a way as to efficiently return the closest restaurants to a particular
location?

Framing the Problem

Given a set of geospatial information in RDF, all of which are points, create
a system that is capable of efficiently answering the query, ‘‘Return all of the
points that are within a distance X of a given location.’’
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Approach and Rationale

This program uses RDF data to answer spatial queries. The design of the
software can therefore be broken into those two main groups: spatially oriented
and RDF-oriented software components. The spatially oriented code makes
use of the aforementioned quad tree implementation from the JTS, and the
RDF-oriented software, like other examples in this book, uses the Jena API.

Components

The main classes used in this example are JenaSpatialIndex and Spatial

Graph. JenaSpatialIndex wraps a JTS Quadtree object so that it can be easily
used from Jena, serving as the bridge between the program and JTS. The
SpatialGraph class implements Jena’s Graph interface and is used to integrate
the spatial indexing into the higher-level Jena constructs. The Example class
serves as the main test harness program and simply uses a Jena Model backed
by a SpatialGraph to read a data file and answer a query.

The JenaSpatialIndex class has two methods: add(Node, Double, Double)

and findWithin(double, double, double). The add method takes a Node

representing an RDF resource and two double-valued numbers, representing
the latitude and longitude, respectively, of the resource. As RDF statements
are processed, the JenaSpatialIndex updates the latitude or longitude value
for a given Node to collect a complete description of the location. Once an RDF
resource has been fully defined with a latitude and longitude, it is added to
the underlying spatial index. The findWithin method takes three parameters:
a latitude, a longitude, and a search distance in meters. It creates a bounding
box based on the search distance and uses the spatial index to return all Nodes
within the bounding box.

The SpatialGraph class wraps an existing Graph object and uses the
Delegation design pattern to avoid having to implement the entire inter-
face. The two methods of significance in this class are add(Triple) and
getSpatialSubgraph(double, double, double). In the SpatialGraph, the add
method inspects its parameter to determine if it is a statement that describes
a latitude or longitude value. If it is, the SpatialGraph calls the add method
on its JenaSpatialIndex object to register the value. The getSpatialSubgraph

method is used to pose spatial queries of the model. Calling that method with
latitude, longitude, and distance values returns another Graph object contain-
ing only statements about locations within the defined region (that is, the area
within distance degrees of the latitude and longitude).

Now that you’ve seen how the program is structured, you’ll be able to
understand the code. Before tackling the code, however, you should see
what some of the data looks like. The following example is a sample from
a larger file that was generated from a restaurant chain’s website using a
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screen-scraping program. The data can be found along with the source code
at www.semwebprogramming.com.

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://semwebprogramming.net/example#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84 pos#> .

[] a geo:Point ;

dc:description “707 Southpark Blvd, Colonial Heights VA 23834“ ;

ex:hasPhoneNumber “(804) 526-4481“ ;

geo:lat “37.247886“ ;

geo:long “-77.388923“ .

[] a geo:Point ;

dc:description “653 Center Point Way, Gaithersburg MD 20878“ ;

ex:hasPhoneNumber “(301) 926 9011“ ;

geo:lat “39.121925“ ;

geo:long “-77.234754“ .

[] a geo:Point ;

dc:description “136 Lantana Dr, Hockessin DE 19707“ ;

ex:hasPhoneNumber “(302) 239-1270“ ;

geo:lat “39.776117“ ;

geo:long “-75.713017“ .

The example that follows is an excerpt of the SpatialGraph class, showing
all of the methods that are not simple delegations to the innerGraph object:

package net.semwebprogramming.chapter13.spatial;

// Imports...

public class SpatialGraph implements Graph {

private final Graph innerGraph;

private final JenaSpatialIndex index;

/**

* Initializes a SpatialGraph. This class will add a spatial

* indexing capability to another graph.

* @param graph a graph to which a spatial indexing capability

* will be added

*/

public SpatialGraph(Graph graph) {

innerGraph = graph;

index = new JenaSpatialIndex();

}

/**

* Adds a triple to the graph, and adding any relevant portion to
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* to the spatial index.

*/

public void add(Triple triple) throws AddDeniedException {

innerGraph.add(triple);

String predicate = triple.getPredicate().getURI();

if (WGS84.lat.equals(predicate) || WGS84.lon.equals(predicate)) {

Node subjNode;

Node objNode;

Double value;

subjNode = triple.getSubject();

objNode = triple.getObject();

if (WGS84.lat.equals(predicate)) {

value = new Double(objNode.getLiteral().toString());

index.add(subjNode, value, null);

} else if (WGS84.lon.equals(predicate)) {

value = new Double(objNode.getLiteral().toString());

index.add(subjNode, null, value);

}

}

}

/**

* Given a latitude, longitude and distance (measured in meters),

* this method will return a Graph object containing only

* statements where the subject is a point that falls within a

* rectangular region centered on the latitude/longitude value.

*

* @param lat the latitude of the center of the search area

* @param lon the longitude of the center of the search area

* @param distance the maximum distance from the center point

* for which values should be returned

* @return a graph including only statements about locations

* within the search region

*/

public Graph getSpatialSubgraph(double lat, double lon,

double distance) {

Graph toReturn = new GraphMem();

List<Node> validLocations;

validLocations = index.findWithin(lat, lon, distance);

for (Node location : validLocations) {

ExtendedIterator iterator =

innerGraph.find(location, null, null);

try {

while (iterator.hasNext()) {

toReturn.add((Triple) iterator.next());

}
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} finally {

if (null != iterator) {

iterator.close();

}

}

}

return toReturn;

}

// Other methods to implement the Graph interface are delegated

// to the innerGraph object.

}

The constructor creates a JenaSpatialIndex object and then stores the
value of the underlying graph to which the spatial indexing is applied. This
innerGraph object is the one to which the other methods of the Graph interface

are delegated. They are not shown here in the interest of space, but the full
code is available at www.semwebprogramming.com.

The first important method is add. The add method checks each statement to
see if it is a latitude or longitude value describing a point. If it is either of these,
then the method extracts either the latitude or longitude value and adds it to
the JenaSpatialIndex. The SpatialGraph’s add method also delegates the call
to the underlying graph’s add method. This technique is useful—delegating
the behavior to an underlying graph makes it possible to enhance a graph with
only a small amount of code. It is a particularly advantageous approach in this
case because it allows enhancements to be transparent to the rest of Jena.

The next method is getSpatialSubgraph. This method creates a new
Graph implementation to return and then issues a spatial query to the
JenaSpatialIndex based on the parameters passed as input to the method.
The JenaSpatialIndex class returns a list of Jena Node objects that represent
locations within the specified area. The getSpatialSubgraphmethod proceeds
through the Nodes, retrieving all of the statements from the underlying graph
where the Node is the subject of the statement. These statements are all added
to the Graph, which is returned at the end of the method.

Now that you’ve seen how to integrate extra functionality into Jena with
an enhanced Graph implementation, consider the spatial indexing itself by
looking at the JenaSpatialIndex class in the following code:

package net.semwebprogramming.chapter13.spatial;

// Imports...

public class JenaSpatialIndex {

class Location {

private static final double AVG MERIDONAL RADIUS = 6367449;

private static final double POLAR RADIUS = 6356752.3142;
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private Double x = null;

private Double y = null;

public double getX() {

return x.doubleValue();

}

public void setX(double d) {

x = new Double(d);

}

public boolean hasX() {

return null != x;

}

public double getY() {

return y.doubleValue();

}

public void setY(double d) {

y = new Double(d);

}

public boolean hasY() {

return null != y;

}

}

/**

* A collection of URIs to locations. This is used a

* temporary staging ground so that complete locations

* can be built up statement by statement. I.e. because

* the order of the statements is not known, it could be

* that the statements saying:

* :x a Location ; hasX “10“ ; hasY “25“ .

*

* actually come in the opposite order. In that case, we

* need to retain the information about the X value before

* we can properly add it to the spatial index, which wants

* only fully specified locations.

*/

private HashMap<Node, Location> locations;

/**

* A collection of the spatially indexed URIs.

* The array index is the rectangle id used by the tree.

* URIs are only spatially indexed if they have a valid X

* and Y value.

*/

private final Set<Node> indexedNodes;

private final SpatialIndex index;

public JenaSpatialIndex() {

index = new Quadtree();

locations = new HashMap<Node, Location>();

indexedNodes = new HashSet<Node>(50);

}
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public void add(Node node, Double x, Double y) {

Location location;

// Check to see if this is already spatially indexed. If

// it is, we can ignore the add call, since it’s already

// been added.

if (! indexedNodes.contains(node)) {

// if this is the first time we’ve seen this URI,

// create a new entry for it in the map.

if (! locations.containsKey(node)) {

location = new Location();

locations.put(node, location);

} else {

location = locations.get(node);

}

// if we now know an x value, update the location

if (null != x) {

location.setX(x.doubleValue());

}

// if we now know a y value, update the location

if (null != y) {

location.setY(y.doubleValue());

}

// if the location is now fully specified, add it to the

// spatial index

if (location.hasX() && location.hasY()) {

indexedNodes.add(node);

index.insert(new Envelope(location.getX(), location.getX(),

location.getY(), location.getY()), node);

}

}

}

private Envelope getSearchEnvelope(double lat, double lon,

double distanceInMeters)

{

Envelope toReturn = null;

double metersPerDegreeLat, metersPerDegreeLon;

double latOffsetInDegrees, lonOffsetInDegrees;

metersPerDegreeLon = (Math.PI / 180) *

Math.cos(Math.toRadians(lat)) * AVG MERIDONAL RADIUS;

metersPerDegreeLat = (Math.PI * POLAR RADIUS) / 180;

lonOffsetInDegrees = distanceInMeters / (metersPerDegreeLon);

latOffsetInDegrees = distanceInMeters / (metersPerDegreeLat);

toReturn = new Envelope(

lon - lonOffsetInDegrees,

lon + lonOffsetInDegrees,

lat + latOffsetInDegrees,

lat - latOffsetInDegrees);
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return toReturn;

}

public List<Node> findWithin(Node uri,

double maximumAllowedDistance) {

List<Node> toReturn = new ArrayList<Node>(0);

Location temp;

if ( indexedNodes.contains(uri)) {

temp = locations.get(uri);

toReturn = findWithin(temp.getX(), temp.getY(),

maximumAllowedDistance);

}

return toReturn;

}

public List<Node> findWithin(double x, double y,

double maximumAllowedDistance) {

ArrayList<Node> toReturn = new ArrayList<Node>(0);

Envelope searchEnvelope;

final double offset = maximumAllowedDistance;

List candidates = null;

Node candidate;

Location tempLocation;

searchEnvelope = getSearchEnvelope(

latitude, longitude, maximumAllowedDistance);

candidates = index.query(searchEnvelope);

for (Object o : candidates) {

tempLocation = locations.get(o);

if (searchEnvelope.contains(

tempLocation.getX(),

tempLocation.getY())) {

toReturn.add((Node) o);

}

}

return toReturn;

}

}

This class addresses the challenge that a statement expresses only a single
datum, but the spatial index requires both latitude and longitude values before
a point can be indexed. Since the existence of one statement is independent
of all others, it is possible that there could be a set of statements with an
incompletely defined point—only a latitude or a longitude. This means that
the program must maintain a list of incompletely defined points, which is
managed by the JenaSpatialIndex.

Looking at the preceding code, the first item to note is the inner class called
Location. A Location object is used to represent the latitude and longitude
values using objects so that they can be null. This way, it is possible to
determine whether or not the point is complete.
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The JenaSpatialIndex class itself maintains three collections of data. The
first is a mapping, called locations, of Jena Nodes to Location objects. This
allows the spatial index to answer spatial queries with useful results. The next
is a set, called indexedNodes, of Node objects that have been fully defined and
added to the spatial index. The final data value is the spatial index itself, an
object called index.

The add method accepts three parameters: a Node and two Double objects,
where the Doubles can be null. The method simply creates a new Location

for the Node if one does not already exist and then populates the Location

with whichever value (latitude or longitude) is not null. If at the end of the
method the Location object has both latitude and longitude values, then it is
added to the spatial index and to the set of indexed nodes. This ensures that
the spatial index is properly populated with valid Location objects.

The findWithin method is where the spatial index is used to retrieve values.
Given a latitude, longitude, and distance, the method constructs a search
bounding box. It uses the spatial index’s query method to return a list of
candidate matches. Recall that a spatial index can help to reduce the overall
number of distance calculations required, but that it can sometimes return
false positives. A final confirmation of all of the returned candidates is used to
populate a list of Nodes that is ultimately returned to the calling code.

This small set of classes can be used to extend Jena to efficiently answer
queries about simple spatial data. The techniques, however, are not specifically
limited to enhancing Jena for spatial data. In fact, a similar approach can be
used to incorporate a temporal index, allowing for queries that are bounded
in transaction time.

Example: Transaction Time–Bounded Queries
As discussed previously, transaction time–bounded queries can allow users to
answer questions of the model as it changes over time. Consider the situation
of a weather-tracking system. New readings are constantly arriving from a
collection of different sensors around a geographic region. A meteorologist
is testing a new predictive model and wants to issue a query against the
system as it was at 8:30 last Friday evening. How can that query be answered
correctly?

Framing the Problem

Given a Jena model to which new statements are being added over the course
of a program’s execution, create a system that can efficiently answer queries
on data sets that are bounded by transaction time. A simplifying assumption
of the model in this example is that it does not allow deletions. Therefore, the
state of the model at any point in time is defined as the collection of statements
added to the model before or at that point in time.
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Approach and Rationale

In order to answer a query against the data as it existed at an arbitrary time, the
software maintains a timestamp for each statement added to the model. Given
a particular date and time, the system creates a derived model, including
all of the statements added to the original model up until the designated
time. There are two main classes: a TemporalTripleIndex, which manages a
collection of statements and associates them with relevant timestamps, and a
TemporalGraph class, which implements the Graph interface and incorporates
a TemporalTripleIndex. The TemporalGraph class offers a method that will
create a temporally bounded subgraph, which can be used as the basis of a
new Jena model.

Components

In this example, the most important class is the TemporalTripleIndex. This
class maintains a collection of statements and timestamps and provides an
efficient means of collecting statements within a set of temporal bounds.
There is only one complicated method in the TemporalTripleIndex class: get
Triples(Calendar, Calendar). Following is a section of the TemporalTriple

Index class, showing the getTriples method as well as other ones:

package net.semwebprogramming.chapter13.temporal;

// Imports...

public class TemporalTripleIndex {

private class TemporalTriple implements Comparable<TemporalTriple> {

private final Triple triple;

private final Calendar time;

public TemporalTriple(Triple trip, Calendar time) {

triple = trip;

time = time;

}

public Calendar getTime() {

return time;

}

public Triple getTriple() {

return triple;

}

public int compareTo(Object arg0) {

int toReturn = time.compareTo(arg0. time);

return toReturn; }

}

private final List<TemporalTriple> triples;

private boolean sorted = true;

public TemporalTripleIndex(int capacity) {

triples = new ArrayList<TemporalTriple>(capacity);

}
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public void add(Triple triple) {

triples.add(new TemporalTriple(triple, Calendar.getInstance()));

}

public List<Triple> getTriples(Calendar lowerBound,

Calendar upperBound) {

int lower = 0;

int upper = triples.size() - 1;

int returnSize = 0;

boolean valid = true;

List<Triple> toReturn;

if (! sorted) {

Collections.sort( triples);

}

if (null != lowerBound) {

if (! triples.get( triples.size() - 1)

. time.before(lowerBound)) {

lower = findLower(search(0, upper, lowerBound));

} else {

valid = false;

}

}

if (null != upperBound) {

if (! triples.get(0). time.after(upperBound)) {

upper = findUpper(search(0, upper, upperBound));

} else {

valid = false;

}

}

if (valid) {

if (upper > lower) {

returnSize = upper - lower;

}

toReturn = new ArrayList<Triple>(returnSize);

for (int i = lower; i < upper; i++) {

toReturn.add( triples.get(i). triple);

}

} else {

toReturn = new ArrayList<Triple>();

}

return toReturn;

}

// Other utility methods and convenience overloads are not shown

}

Before reviewing the getTriples method, inspect the rest of the class.
The class starts with an inner class, TemporalTriple. A TemporalTriple ties
together a Jena Triple and a Calendar date/time object. It implements the
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Comparable<TemporalTriple> interface and sorts according to its Calendar

object. The TemporalTripleIndex maintains a list of TemporalTriple objects,
which it can use to answer temporally bounded queries. The add method
creates a TemporalTriple to wrap the statement to be added, associating it
with a new Calendar object. The new TemporalTriple is added to the class’s
collection, appending it to the end of the list.

The getTriples method takes an upper and lower temporal bound, defined
by Calendarobjects. Either bound, or both, can be left undefined. The algorithm
is as follows:

1. If the list of TemporalTriples is not sorted, sort it by timestamp.
The index supports adding statements from any time, not just
the current time. If statements with a timestamp in the past have
been added to the list of triples, the list will need to be sorted.

2. If the lower temporal bound is defined, check to make sure that it is
not after the latest statement in the collection. If it is, no statements
in the collection will be within the temporal bounds, so declare the
operation invalid. If it is not, find the index of the first TemporalTriple
with a timestamp that is either equal to or after the lower bound.

3. If the upper temporal bound is defined, check to make sure that it is
not before the first statement in the collection. If it is, no statements
in the collection will be within the temporal bounds, so declare the
operation invalid. If it is not, find the index of the last TemporalTriple
with a timestamp that is either equal to or before the upper bound.

4. Return a list consisting of every statement between the lower index and
the upper index.

Now that you have seen a temporal index capable of maintaining basic
transaction time information, consider the TemporalGraph class:

package net.semwebprogramming.chapter13.temporal;

// Imports...

public class TemporalGraph implements Graph {

private final Graph innerGraph;

private final TemporalTripleIndex index;

public static TemporalGraph newInstance(){

return new TemporalGraph(new GraphMem());

}

public TemporalGraph(Graph inner) {

innerGraph = inner;

index = new TemporalTripleIndex();

}

public Graph getTemporalSubgraph(Calendar start, Calendar end) {

Graph toReturn = new GraphMem();

List<Triple> triples = index.getTriples(start, end);
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for(Triple t : triples)

{

toReturn.add(t);

}

return toReturn;

}

public void add(Triple t) throws AddDeniedException {

innerGraph.add(t);

index.add(t);

}

// Additional Graph methods delegated to the innerGraph object.

}

This class is very similar to the SpatialGraph class from earlier because it
supports the same usage model. The TemporalGraph class is also implemented
using the same Delegation design pattern as the earlier SpatialGraph, dele-
gating most calls to an inner graph. However, when Triples are added to the
graph, they are additionally added to the temporal index. The TemporalGraph

uses this index in its getTemporalSubgraph method, which issues a tempo-
ral query against the index and then populates a new Graph object. Jena’s
ModelFactory.createModelForGraph can use this newly created graph to con-
struct a Model, which contains all the statements of the original model within
the specified temporal bounds. That Model can then be used to answer queries
as described in the problem statement.

Summary

This chapter presented an introduction to spatiotemporal development for the
Semantic Web. You learned some of the basics of spatial and temporal systems
and about some of the challenges associated with them. These challenges
include not only abstract problems of information modeling but also practical
concerns of program efficiency. You saw some approaches to overcome these
challenges, with examples of RDF and OWL modeling for spatial and temporal
data, and additional data structures. Finally, a walkthrough of example code
helped to ground some of the discussion into something tangible. In the next
chapter, you’ll learn guidelines and tips for how to architect both large- and
small-scale Semantic Web systems.

Notes

1. See C. S. Jensen, J. Clifford, S. K. Gadia, A. Segev, R. T. Snodgrass,
‘‘A glossary of temporal database concepts,’’ ACM SIGMOD
Record, Vol. 21, no. 3 (1992); http://portal.acm.org.
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14
Semantic Web Patterns and

Best Practices
‘‘What’s the point of wearing your favorite rocket ship underpants if nobody ever

asks to see ‘em?’’

—Calvin (Calvin and Hobbes by Bill Watterson)

The quote may seem silly and off-topic, but the principles, architectures, and
best practices by which a system are built often go unseen and unappreciated
by those who use it. Developers tend to be the only ones who truly appre-
ciate the importance of good design, reusable components, and standardized
architectural patterns. So far, this book has covered the technologies and tools
and protocols and standards and everything else that goes into programming
with the Semantic Web. While a lot of time and attention is appropriately paid
to the building blocks of systems and applications, most of the programming
examples that have been presented are narrowly scoped and developed for
demonstration purposes only. We included the FriendTracker reference appli-
cation in this book to provide an example of integrating the technologies of
the Semantic Web into a full-blown system, but it is only one such system.
What is needed is a higher-level view of the major components and designs of
real-world Semantic Web applications.

The purpose of this chapter is to provide a high-level perspective of Semantic
Web programming by exploring a series of application architecture patterns.
This chapter does not deal with software patterns per se; rather, it deals with
common architectural idioms and system blueprints that are often used in
Semantic Web applications. In a sense, this chapter represents a look back over
the topics that we have covered so far. Only this time they are presented as they
fit into larger, real-world applications. In addition to architecture patterns, this
chapter explores a number of common issues encountered in Semantic Web
applications and some suggested best-practice solutions to them.

467
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The goals of this chapter are:

To explore a series of Semantic Web application architectural patterns

To provide a number of best-practice solutions to common challenges
and issues encountered when programming on the Semantic Web

Aggregating Disparate Data Sources

The purpose of the first architecture is to aggregate data from multiple
disparate data sources that have their own storage and representation format
and knowledge model. The general flow of the architecture is from data source
to the user via a multistep process that converts the data from each source
into RDF and then translates it into a common ontology (often called a domain
ontology). In this example, the data flows only from the data sources to the
knowledgebase, but not back. This is essentially a read-only environment
for aggregating data from disparate sources. More advanced architectures
can incorporate the ability to write back changes to the data; however, such
features introduce new challenges and considerations. Consider Figure 14-1,
representing the high-level architecture of this system:

Relational
DB's

XML
Docs

Web
Services

1

RDF Interfaces

Domain Translation

Knowledgebase

2

3

4

Data Sources

Figure 14-1 Architecture diagram representing a system that aggregates data from multiple
disparate sources into RDF that is described by a single knowledge model
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Figure 14-1 identifies by number each of the major components of the
architecture. Following is a brief description of each component:

1. Data sources—Information starts in each of the data sources. In this
example, the data sources are a relational database, a proprietary format
flat file, and an XML file.

2. RDF interface—Each data source is exposed to the system using an RDF
interface. This interface generates RDF from the data contained in the
data source.

3. Domain translation—Each RDF interface generates ontologically
described RDF. This component performs any ontology translation
required to get the data into the user’s or final application’s knowledge
model.

4. Knowledgebase—Once the data is in RDF and described according to
the appropriate ontology, it is stored in a knowledgebase that is accessi-
ble to the user interface.

We’ll discuss many subtle variations of this architecture throughout this
section. In the following subsections, each of the components will be decom-
posed and discussed in depth. As you may have noticed, the FriendTracker
application is based on this general architecture. In fact, the chapters that
cover FriendTracker (Chapter 9, ‘‘Combining Information,’’ and Chapter 10,
‘‘Aligning Information’’) cover the RDF interface and domain-translation com-
ponents of this architecture. FriendTracker is just one specific instance of this
architecture being applied to a particular set of requirements. Depending on
the size and scale of the desired system, this architecture may exist entirely
on a single system or within a single process, or it could span multiple servers
and client machines.

Exposing Data Sources as RDF
Each data source in this architecture is exposed to the rest of the architecture
via RDF interfaces. Each interface must meet a few fundamental requirements:

It must accept a query or specification of the data to return.

It must generate valid RDF that is described by one or more consistent
ontologies.

It must generate RDF that accurately reflects the data contained in the
underlying source.

The specific requirements of the system dictate the sophistication of the
interface. For example, a distributed query system that decomposes and
routes SPARQL queries will require that each RDF interface is capable of
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satisfying SPARQL queries. A system in which provenance, or the ability to
trace the source of a piece of information, is critical will require that each RDF
interface expose RDF with resolvable URIs or metadata that allows a consumer
to determine where the data came from.

There are a number of ways to expose an RDF interface as a service.
SPARQL endpoints are services that accept SPARQL queries and return
the result set according to the SPARQL protocol. An alternate is to provide the
RDF interface as a SOAP or REST web service. These are not as ideal from a
purist’s perspective; however, it all depends on the requirements of the rest of
the architecture. The issue with exposing an RDF interface using a nonstandard
interface such as a customized web service is that it is nonstandard. Systems
can’t automatically ingest such an interface without some special-purpose
adapter.

Many in the Semantic Web community anticipate that data source maintain-
ers will ultimately expose and maintain RDF interfaces to their data sources.
Many sites already expose XML web service–based APIs that allow web
developers to access the data in their online applications. FriendTracker uses
a number of these services by wrapping them in custom RDF interfaces.

The benefit to integrating data sources using RDF interfaces is that it
decouples the data from the application. This makes it possible to swap
existing data sources or integrate new ones without requiring substantial
changes to the rest of the architecture.

Bringing Data into the Domain Knowledge Model
Once each data source is exposed as RDF and described by a source ontology,
it must be brought into the domain’s knowledge model. There are a number
of ways to accomplish this task using ontology descriptions, SWRL rules, or
SPARQL construct queries or by configuring the underlying RDF interface
such that it produces RDF that is already described by the domain ontology.

The OWL Web Ontology Language provides a number of ways to
relate the classes and properties of multiple ontologies. Two classes or two
properties can be made equivalent using the owl:equivalentClass and
owl:equivalentProperty predicates. In addition to the two equivalence
predicates, any method of defining a class or property in terms of other
classes and properties can be used to relate terms from disparate ontologies.
The real goal of using ontology elements to map between ontologies is to
establish adequate links between the two so that they essentially become
a single ontology where all semantically related or equivalent terms are
defined as such. Consider two ontologies with namespace prefixes d1 and
d2. The first domain contains the class d1:canine, and the second domain
contains the class d1:dog. Asserting that d1:canine owl:equivalentClass

d2:dog will make the two concepts semantically equivalent, any query for
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all instances of d1:canine against a knowledgebase that is performing OWL
reasoning will return all instances of d1:canine and all instances of d2:dog.
If the knowledgebase provides only RDFS reasoning, the same effect can be
achieved by making each class rdfs:subClassOf the other.

The Semantic Web Rule Language (SWRL) is often used to translate data
descriptions from one ontology to another. SWRL rules specify a conjunction
of facts that, if met, imply some other set of facts. SWRL also includes an
extensive library of built-in functions that provide mathematical operations,
string manipulation, and logical operations over sets of variables. These can be
used to generate new data based on existing data. This is something that cannot
be done with OWL. OWL ontologies allow you to generate new metadata
based on existing data, but ontology constructs are not quite as flexible as a
rule language like SWRL. SWRL rules are useful for translation applications
where structural changes must be made to data, such as converting units of
measurement or formatting for literal values. As an example, consider one
ontology in which all measurements are in metric units and another in which
all units are English standard. There is no way to ontologically specify the
conversion factor, but with relative ease a SWRL rule can make it happen. For
more information on SWRL and its capabilities, refer to Chapter 7, ‘‘Adding
Rules.’’

The SPARQL Query Language for RDF contains a query type called construct.
A construct query allows a user to generate a new graph of RDF based on the
results of a query. The benefit of this method is that no additional software is
required. The only required component is a working SPARQL endpoint.

This is a simple operation of interpreting the data source ontology descrip-
tions and generating the appropriate domain ontology descriptions. While
SPARQL doesn’t contain the same expressivity as SWRL in terms of generat-
ing and manipulating literal values, it does provide a much greater ability to
specify the terms of the translation (in this case, the query itself, or in the case
of SWRL, the body of the rule). SPARQL is covered in depth in Chapter 6,
‘‘Discovering Information.’’

Another way to bring data into the domain knowledge model is to simply
configure the RDF interface to generate the data directly in the domain
ontology. Chapter 9 introduces a number of ways of generating RDF that
involve template files or translation files that essentially configure the translator
to generate RDF in a specific format. If the translation file and system are
expressive enough, it may be simplest to just modify the RDF interface to
output the RDF described by the appropriate ontology. The drawback to this
method is that it breaks the decoupling between the data source and the rest
of the architecture. Multiple domains require multiple configurations.
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Storing Information in the Knowledgebase
In most Semantic Web architectures the knowledgebase (KB) is a central
component. The KB persists data, performs reasoning, provides APIs and
query endpoints for data retrieval, and manages the state that drives the
architecture. In aggregation architectures, the role of the KB is to store the
results of the aggregation process and perform domain ontology reasoning.

Initiating the Flow of Data
Depending on the requirements of the application, the method by which
the flow of data is initiated can vary. The user or controlling process may
initiate each data source import directly at the data source. Since each
source potentially has its own query method, this may require quite a bit
of data source–specific configuration. Ideally, the data sources will be vir-
tually integrated to the point that only a single query endpoint is needed,
and queries can be issued against the domain ontology with no awareness
of the underlying data source (unless this visibility is desired). In this kind
of architecture, queries against the knowledgebase are decomposed and trans-
lated into a series of data source–specific queries against each of the RDF
interfaces.

In this specific case, each interface is a SPARQL endpoint; however, different
architectures may support RDF interfaces that take queries of any kind. Each
endpoint processes the query against the underlying data source and returns
the query results. These results are translated back into the domain ontology
representation and aggregated into a complete result set that is persisted in
the knowledgebase. This result set may be persisted permanently, or it may
be treated as a transient query result that goes away once the query session is
complete.

Annotating Unstructured Data

Tagging systems have become immensely popular during the Web 2.0 move-
ment because they bring the user into the web experience. By giving users the
ability to annotate pieces of data in ways that other users can benefit from,
tagging became a way for users to enrich and expand web content. These
systems take advantage of the fact that it is easy for a human to interpret
images, videos, documents, and other forms of data, while it is very expensive
and difficult for computers to do it with any kind of accuracy.

Tagging systems are immensely useful, but they have one significant draw-
back: tags have no intrinsic meaning. Figure 14-2 shows an example of an
image that is tagged using simple keywords.



Chapter 14 ■ Semantic Web Patterns and Best Practices 473

Daisy

Figure 14-2 Tagging systems are used to help computers organize and index unstructured
data by allowing users to describe the data using simple keywords.

These tags are merely words or phrases. They have no meaning beyond
their potentially ambiguous language-based meaning. In Figure 14-2, Daisy
could refer to a puppy or a flower. Unstructured text describing unstruc-
tured data sources may not be so great after all. A better solution is to allow
users to tag data using semantic tags. These tags are defined in an organic
ontology that grows and changes as users add to and extend it. Such a
tag ontology is seeded with a basic set of common classes and properties.
As users identify that required tags are missing, they simply add them and
then expand the ontology to describe how the new concepts fit in. Such a
system provides the basis for providing much better query capabilities as
well as semantically valid and unambiguous description of data. A number of
projects are emerging that take a similar approach to tagging data, and a lot
of progress is being made on developing standardized annotation vocabula-
ries and ontologies. Among these projects are Fuzzzy (http://www.fuzzzy.
com) and Faviki (http://www.faviki.com). Fuzzzy (with three zs) is a collabo-
rative tagging system for describing and sharing bookmarks. Faviki is a similar
project that pulls its tag vocabulary from DBpedia.

The architecture in Figure 14-3 represents one approach to managing a
semantic annotation system. The purpose of the system is to provide users
with the ability to view unstructured data (maps, imagery, pictures, audio
clips, videos, text documents, web pages, and so on) and make structured,
ontology-based annotations that describe the data.

The general components of the architecture are numbered and introduced
here. We’ll describe each component in detail in the subsections that follow.

1. Annotation management—This component is responsible for providing
the client application with a way to create and persist general-purpose
annotations.
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Figure 14-3 Semantic tagging architecture

2. Ontology management—This component provides the capabil-
ity to build and extend ontologies that are used in annotations
to describe the information that is being annotated.

3. Unstructured data sources—The system annotates data from unstruc-
tured sources.

4. Client application—The client application uses each of the other com-
ponents to provide the user with an interface for creating and querying
annotations.

Annotation Management
The annotation management component of the system can be broken down
into two pieces: the persistence mechanism and the access API. In a distributed
application, the persistence mechanism will likely be a knowledgebase server
that provides a SPARQL query endpoint as well as an interface for mod-
ifying the knowledgebase contents. The access API is a client layer that
provides the client application with a structured API for creating and retrieving
annotations.

Annotations are RDF descriptions based on an annotation ontology. Annota-
tion instances have both general and specific contextual information associated
with them. General information includes spatial and temporal descriptions as
well as the information necessary to index back into the unstructured source to
which the annotation refers. Consider the example annotation in Figure 14-4.
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d: Annotation01

rdf: type

d: creator

d: creationDate

"January 20, 2009"

"Ryan"

d: source

d: lat d: long

"38.88965" "−77.03536"

d: Annotation

d: SatelliteImage

d: point

d: WashingtonMonument

d: about

Figure 14-4 Example annotation of a satellite image of the Washington Monument in
Washington, D.C.

As the example shows, there are elements of an annotation that are common
to all annotations, such as the time stamp, the creator, the date of creation, and
so on. There are also elements of the annotation that are specific to the media
format and topic of the annotation data. The latter elements require that the
system support a flexible set of ontologies so that users can express what they
need to regardless of whether the concepts and relationships already exist in
the ontology.

The annotation management component provides access to existing annota-
tions. This is the component that allows the client application to query the full
set of annotations for those that meet a set of parameters. In order to provide
efficient querying for annotations, this component may incorporate specialized
indices that provide quick access to annotations that have specific character-
istics. Two examples are indices that provide quick access to all annotations
within a specified spatial or temporal range. When searching a calendar-based
system, a temporal index may be used to make it more efficient to retrieve
annotations within a range of dates. Similarly, a spatial index may be used to
retrieve all annotations for a spatial bounding box. Chapter 13 explored the
topic of space and time on the Semantic Web in depth and presented examples
of retrieval index implementations for each.

Ontology Management

In this architecture, ontology management plays two significant roles: to
provide the client with the ontologies that can be used to build and query
annotations and to provide the client with a system to incrementally build
and extend those ontologies as needed. The ontology knowledgebase doesn’t
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necessarily have to be separate from the annotations knowledgebase in imple-
mentation, but it is conceptually separate, and separation may simplify the
implementation.

The first aspect of ontology management is to provide the client application
with a set of concepts and relationships that can be used to generate annota-
tions. This system provides the user with a set of terms that can be used to
describe or tag each kind of unstructured data. This can also be the system that
suggests to the client the types of annotations or metadata that may be relevant
to a specific kind of unstructured data. In addition, each kind of unstructured
data will have its own context for identifying the element of the data to
which the annotation refers. Consider the following example contexts used by
annotations to identify the part of the unstructured data to which they refer:

Latitude and longitude coordinates identify a bounding box in satellite
imagery.

A time stamp identifies the offset or position within an audio stream.

A character offset and length identify a word or phrase in a text file.

A time range and a bounding box identify an object within a video
stream.

The annotation structure of the ontology manages these data source–specific
annotation classes and their relevant properties. It also manages the ontologies
that can be used to associate general information with specific annotations. In
other words, it manages the ontologies that specify the concepts and instances
that the annotations are highlighting.

The second aspect of the ontology management is to provide the user
with the ability to add new classes, properties, and instances to the ontology
collection if needed. If a user is annotating an image of a Boeing 747, but
the ontology doesn’t contain one of the concepts needed to describe it, the
system provides tools for adding the new concept and any properties that
might be important to it. Once the new concepts are added, they are available
to all users. By encouraging the reuse and sharing of concepts via a central
knowledgebase, the system helps minimize ambiguity. In addition, when
multiple similar concepts and properties do exist, users can identify how they
are related so that the system can correctly process queries and users can see
the available concepts and how they relate.

Unstructured Data Sources and the Client Application
There is no reason why an annotation system such as this cannot be used
with a structured data source, but it is more common that it is applied to
unstructured sources. Unstructured data sources can range from audio clips
to radio stations, television feeds, web documents, text files, pictures, maps,
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satellite imagery, and the like. While the data varies, the concepts it represents
are not singular to the source. Using a semantics-based approach to annotating
data provides greater flexibility when incorporating new data sources and
when distributing queries among the various sources of annotations.

While the data aggregation system was concerned with pulling together the
actual data contained in each data source, this system is concerned only with
pulling together annotations about each data source. As a result, there are
no RDF interfaces exposing each data source. Instead, the application or an
additional API must have a data source–specific access plug-in for retrieving
and presenting data from each unstructured source. Given an annotation of
a specific piece of satellite imagery, the client application must know how to
go to the appropriate source, query for the piece of source imagery, render it
to the user, and then overlay the appropriate annotation for user review. This
kind of system still uses semantics and metadata to keep track of the required
information, but it is interested only in the data at a meta level.

The client application must also provide search and retrieval capabilities so
the user can build semantic queries for specific kinds of annotations or specific
concepts associated with annotations, regardless of their source. Consider the
example in Figure 14-5.

d: Annotation01 d: Annotation02

d: url
d: about d: aboutd: source d: source

d: WebPage d: Picture

d: DistrictOfColumbia
d: Structure

d: established

d: locatedIn
"http://en.wikipedia.org/wiki/Washington_monument" rdf: type

rdf: type

d: Monument"1848"

d: WashingtonMonument

Figure 14-5 Example semantic annotations and the corresponding unstructured data

There are two annotations in this example: One is an annotation of a
picture; another is of a Wikipedia article. Along with each piece of data
is the corresponding annotation. Each annotation is about the Washington
Monument and related concepts. A query for the Washington Monument will
retrieve each of these annotations, which will be presented to the user in a
single unified view. A user could also issue a query for all United States
monuments, which would return these results and many more. Using the
ontologically defined annotation terms, a much more intelligent, albeit more
complex, system is possible.
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Coordinating Semantic Services

Web services are nothing new. There are a ton of mature protocols, tools, and
frameworks for managing web services throughout their full life cycle. Usually
services are composed and integrated through an offline bootstrap process.
In some cases, technologies are integrated that provide service advertisement
and discovery. The goal of incorporating semantics into web service systems
is to provide semantic descriptions of services and the data they provide. This
enables more sophisticated methods of advertising and discovering services
autonomously because even if a consumer can’t interact directly with the
service, he or she has the information necessary to see if there is another
service or process that can act as an intermediary or a broker for the service,
translating the service and data as necessary. Chapter 12 covered Semantic
Web Services in depth and presented many of the tools and technologies
critical to them. Figure 14-6 contains a pseudo-architecture illustrating how
services can be composed to provide aggregate services.

mapping
provider

data
provider

data
provider

translator

visualization

data aggregator

Figure 14-6 Services can be composed to perform complex actions or provide new
services.

In this figure, there are nodes that play various roles: data provider, map-
ping provider, translator, aggregator, and visualization. This categorization is
merely for illustration purposes, because any node in a system like this can
play any role, and there are many more roles that we are not presenting in this
discussion. The following list describes each of these node roles:

Data provider—A data provider is any node that serves as a source
of data. It can be an RDF interface to data sources, a knowledgebase,
or any other source of information. These nodes don’t necessarily
have to be sources of RDF; they simply need to be sources of data.
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Mapping provider—A mapping provider is a node that provides infor-
mation used to translate data. This can include SWRL rules, ontology
axioms, or a custom configuration. Mapping providers feed transla-
tors, who act as intermediaries, translating data or service requests.

Translator—A translator takes information from one repre-
sentation or schema and converts it to another. Translators are
both consumers and producers, because they consume data
and mappings and produce the results of the translation.

Aggregator—An aggregator combines data from multiple sources.
In the case of RDF, it takes multiple documents and merges them
into one (or the contents of multiple knowledgebases into one).

Visualization—A visualization node takes data from any data provider
and presents it to a user in visual form. Visualization is just one of
many forms of user interface. Other nodes of this type could include
any form of user interface, including visual, audio, and tactile.

This list of roles is incomplete. As we have already pointed out, there
are essentially limitless roles that can exist in a service architecture. Notice
that loosely coupled, component-based software systems can be mapped to a
service architecture like this. Take, for example, the FriendTracker architecture.
The RDF interfaces on each data source are data providers. The SWRL rules are
mapping providers. The components that translate the data source ontology to
the domain ontology are translators. The knowledgebase acts as an aggregator.
Finally, the user interfaces are visualization components. The FriendTracker is
like a service architecture that has a manual configuration.

The tools and technologies of the Semantic Web aim to make it easier to
share information. One of the goals of Semantic Web Service architectures is to
make it easier to automate configuration. When components are able to adver-
tise and describe the operations they can perform and the data over which
they operate, these components can be orchestrated automatically. Because
this can occur automatically, systems can dynamically reconfigure themselves,
enabling failure recovery and performance optimization. New roles can be
implemented. Orchestrators can satisfy requests by pulling together multiple
disparate services and resources. Directories can provide dynamic service
lookup and ranking. This example architecture is fairly nonspecific because
Semantic Web Services are far from fully developed. Because the hype sur-
rounding service-oriented architectures (SOA) has subsided and many of their
more extraordinary promises followed suit, semantic services have also lost
some of their initial attention. It is unlikely that semantic services will tie your
shoes for you and make your breakfast; however, on a small scale, these kinds
of service architectures will be easier to implement using the technologies of
the Semantic Web.
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Applying Semantic Web Best Practices

In addition to architectural patterns for Semantic Web applications, there are
a number of more targeted practices and philosophies. This section presents a
series of topics that provide insight into potential problem areas of Semantic
Web applications.

Creating URIs
URIs play a critical role in the Semantic Web. They make resources uniquely
identifiable, provide the basis for the graph-like RDF data model, and enable
distributed metadata creation. Creating URIs effectively and correctly is critical
to Semantic Web programming.

URI management has been the subject of a lot of W3C work that has
resulted in some useful documentation including Cool URIs Don’t Change
(http://www.w3.org/Provider/Style/URI) and Cool URIs for the Semantic
Web (http://www.w3.org/TR/cooluris). These documents cover many of the
important details that must be considered when generating RDF content for
the Semantic Web, URIs and all. Among other things, they discuss the elements
of a good URI, the difference between representation and description, and
various approaches to making URIs resolvable.

This section presents a high-level overview of some of the most important
aspects of generating URIs. You should review the documents just pointed
out for a more in-depth exploration of the subject. Any application that
is generating RDF or any developer who is creating an ontology will be
responsible for generating URIs and should keep the following three best
practices in mind when doing so.

Make URIs unique.

Make URIs consistent.

Make URIs resolvable.

Making URIs Unique

URIs representing unique resources on the Semantic Web must be unique. It
would be bad if a single URL addressed two separate web pages. In the same
way, it would be bad if a single URI resolved to two distinct resources on the
Semantic Web. Two resources sharing the same URI imply that the two are
in fact the same resource. It is important to note that two unique URIs can
each refer to the same unique concept. This is due to the no unique names
assumption made by the semantics of OWL. URIs that aren’t generated to
be unique may collide when not intended to do so, which may have severe
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consequences. As an example, Figure 14-7 shows what happens when the two
resources that go by the URI d:Thing1 are loaded into the same model.

d: Thing1

d: Thing1

d: Thing1

d: hasName

"Ryan"

"Ryan"

d: Human

d: Human

"Daisy"

"Daisy"

d: Canine

d: Canine
rdf: type

rdf: type

d: hasName

d: hasName

rdf: type d: hasName rdf: type

Figure 14-7 Two resources that are clearly unique are sharing the same URI. When they
are loaded into the same model, they become the same resource.

The easiest way to manage generating unique URIs is to make sure to
use a unique namespace URI as the basis of each ontology or for new URIs
generated by an RDF interface or application that generates RDF. As long as
the namespace URI is unique, any URI that uses that namespace will also be
unique. A safe way to make sure a URI is unique is to base it on the web
address at which the ontology or application is located. Since web URIs must
be unique, it is safe to assume that no other resolvable ontology or application
will be using that same URI. If no resolvable URI exists, then extra care must
be taken to ensure uniqueness.

Many ontologies use a technique called date spacing when generating unique
base URIs. The basis of the technique is to include the date on which the
document was created or published in the base URI of the document. This
convention can help decrease the probability of a URI collision when generating
arbitrary URIs. Date spacing is illustrated here:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

The date is inserted after the host information and in the following order:
YYYY/MM/DD.

Making URIs Consistent

In addition to making URIs unique, it is important to generate them in a
consistent manner. Consider the process of exposing a document or database
as RDF. The underlying data source contains a number of resources. What if
the same process of exposing a set of data from the data source is performed
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twice in back-to-back fashion? Only a single set of unique URIs should be
generated to represent those resources. The resources haven’t changed. Why
should the URIs?

This is an important feature of RDF interfaces. If URIs are not generated in
a consistent manner, the same exposure process run twice will result in two
different URIs. While still correct, this can be very inconvenient to consumers
of the RDF data. They will have to determine that the two URIs actually refer
to the same resource and deal with that information on their own. Consider
the two representations of Mini in Figure 14-8.

d: Thing1 d: Thing2

d: hasName

"Mini" d: Feline d: Feline"Mini"

rdf: type d: hasName rdf: type

Figure 14-8 An RDF representation of the feline Mini is generated twice, but the URI that
is generated is not consistent, resulting in two instances representing the same resource.

There are a number of useful strategies to generating consistent and unique
URIs. When resources come from databases, the generated URIs usually consist
of some permutation of the database URL, name, the table from which the
resource was generated, and the column or columns that provide the primary
key for the table. As long as the database is not regenerated or the schema
changed, this type of method will always generate the same URI for the same
record in a database. Regardless of where the data comes from, the idea is the
same: URIs should be generated from characteristics of the data that uniquely
identify the instance of the data while not changing during the regular life
cycle of the data.

One interesting case to consider is creating URIs to represent statements
involved in reification. In this case, the statement object itself is commonly
modeled as an anonymous node without an explicit URI. Sometimes your
implementation of reification may require that you assign the statement
instance an explicit URI. In this case, it is useful to make the statement URI
unique and consistent to simplify the generation of and retrieval of reification
instances. One simple approach to solve each of these issues is to make the
URI based on a hash of the concatenated subject, predicate, and object. As long
as the hash doesn’t produce a significant number of collisions, it will always
generate the same unique URI for a given triple. This sort of technique can
be used across systems as well because many hash algorithms are platform
independent.
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Making URIs Resolvable

The third best practice to consider when creating URIs is that URIs should
be resolvable. In order for the vision of the Semantic Web to really come
true, all this information and metadata and ontology descriptions need to be
accessible to computers. If ontologies and resources aren’t resolvable, it will
be much harder for this to happen. The idea behind URI resolvability is that
the namespace URI of an ontology or RDF document should resolve to that
document. This way, a user or application can retrieve the RDF document that
describes a resource by resolving it.

URI resolvability is a sticky subject because it is not always easy or practical
to implement. On the one hand, it means that developers who create ontologies
have to have somewhere to host the ontology where it will have a consistent
and resolvable URL for its lifetime. On the other hand, consider how much less
convenient ontology validation would be if ontologies weren’t resolvable and
tools couldn’t just grab them off the Web using their URLs. Useful features like
autocomplete and automatic syntax checking would be much more onerous
to implement and use.

Specifying Units of Measurement
Everyone learned in science class that the units of a measurement are just as
important as the value of the measurement itself. Knowing that the length of
an object is five doesn’t mean a whole lot by itself. It could be five inches, five
meters, or five astronomical units. While in some situations, values have an
implicit unit (for example, saying a person is 27 usually implies the unit years),
these scenarios are difficult to codify and express in a way that computers can
utilize.

OWL and RDF allow for the rich description of resources; the same is not
true of literal values. The only description of literal values that is supported is
the specification of datatype and in the case of strings, language. Arguably, this
is a shortcoming of both RDF and OWL, as neither provides direct support.
Support can be mimicked using some of the techniques that will be described
in this section; however, each of the approaches described has its own benefits
and drawbacks. The typical approaches to modeling literals with specific
standard units of measurements include:

Unit-specific properties

Unit-specific datatypes

Statement reification

Value containers

With most of these approaches, there is a tension between expressivity and
usability. Depending on the use case for the information, one approach may
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be better than the others. When a lot of computation is being performed, an
efficient means of determining the unit of a literal may be very important. When
literals are merely being displayed to humans without any interpretation, it
may be adequate to express the unit as part of the literal value itself (5m
to represent five meters). None of these methods is official or named in a
specification. Thus, any application that uses one of these methods to maintain
unit information will also have to interpret the units in order for them to have
any bearing on the behavior of the application. The following subsections
discuss each approach in brief.

Unit-Specific Properties and Datatypes

The idea behind using unit-specific properties and datatypes is to create a
unique version of each that is made for a specific unit of measurement. A prop-
erty representing length would become length-feet. A property representing age
would become age-years. A datatype representing floating point values would
become float-feet, or integers would become int-years.

Unit-specific properties have the negative impact that they create extra
redundancy in ontologies. For example, an ontology that contains a property
height will need a version of it for each unit of measurement used. This can
get intractable quickly and can make it harder to reuse ontologies. Figure 14-9
illustrates the approach and the accompanying issues.

d: Ryan
d: hasHeight-inches

d: hasHeight-feet

d: hasHeight

d: hasHeight

d: Tower5

d: Ryan

d: Tower5

"76"

"50"

"76"^^ int-inches

"50"^^ int-feet

Figure 14-9 Unit-specific properties and datatypes create the need for extra versions of
properties and datatypes and make it harder to work with the unit-specific concepts.

In addition, the conflation of property and unit implies that the two are
connected when they are not. The unit of measurement is related to the
literal value, not the property. On the other hand, unit-specific properties are
very clear and don’t add complexity to the data representation. Unit-specific
datatypes have essentially the same benefits and drawbacks. However, not all
frameworks support custom datatypes. As a result, they may introduce added
complexity or incompatibility to an application.
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Statement Reification

An alternate approach to annotating literals with the appropriate units is to
annotate the reification resource of a statement with unit information that
describes the value of the statement. The result is that a statement (subject,
predicate, and object) is annotated with a unit of measurement. As Figure 14-10
shows, the statement Ryan hasHeight 76 has a unit of measurement of inches.

d: hasHeight
d: Ryan

d: inches

d: Stmt1

rdf: subject rdf: predicate
rdf: object

rdf: type

d: hasUnits

"76"

rdf: Statement

Figure 14-10 Unit of measurement information can be attached to the statement in which
a value is used.

This approach is an improvement over unit-specific properties and datatypes
in the sense that it eliminates potential redundancy in the data model; however,
this is one of the only improvements to be had. Once again, the reification
approach misplaces the unit information. Instead of just the literal or the literal
and the property, now the units are associated with the entire statement. In
addition, this method is complex and potentially expensive. Retrieving values
and their units requires a much more complicated query than retrieving just the
values, and creating new values now requires the generation and maintenance
of reification information.

Value Containers

One of the most flexible, explicit, and correct approaches to associating units of
measurement with literal values is the use of value containers. This approach
replaces literal values with resources that represent the collection of a literal
value and a unit of measurement. Figure 14-11 demonstrates the use of a value
container to express that Ryan hasHeight 72 inches.

This is the first approach that has been presented that correctly associated
the units with only the literal value. This method also represents units as
resources themselves, meaning that the units could be richly described using
an ontology, and reasoning could be performed and rules could be used to
perform unit conversions. The drawback to this approach is that it is the
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most complex representation presented so far. Using this method to represent
values essentially eliminates the practical use of datatype properties because
all values will be stored in value containers that are associated with individuals
using an object property. This also has the side effect of eliminating your ability
to utilize OWL semantics with any of these kinds of properties. For example,
data value restrictions and functional datatype properties will not work as
expected because there is a level of indirection between instances and their
attributes. In addition, this method is more complex and expensive to represent
and to query, and like all the others it is nonstandard and may exacerbate
interoperability issues.

d: Ryan d: val1
d: hasHeight

d: hasValue d: hasUnit

"76" d: inches

Figure 14-11 The value container associates the literal value 72 with the unit of measure-
ment inches.

Representing N-ary Relationships
Relationships in RDF and OWL are binary. That is, a predicate can link
only a single subject with a single object. Sometimes, relationships are n-ary;
that is, an individual has multiple values for multiple properties whose
pairing is significant. Consider a simple example of a building that has a
geolocation. The geolocation is represented by a latitude value and a longitude
value. The two values accurately convey the location of the building when
they are interpreted as a pair. The best way to model this information is to
introduce an intermediate object that acts as a container for the latitude and
longitude values. Consider the following example RDF:

d:Person01 d:hasCoordinate d:coord1.

d:coord1 d:hasLatitude “38.88965“;

d:hasLongitude “-77.03536“.

In this example, the person d:Person01 is associated with a coordinate that
has a latitude and a longitude. Using restrictions, the ontology could even
define a class that represents the coordinate based on the presence of the
properties d:hasLatitude and d:hasLongitude. That would simplify queries
for all coordinates.
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Even though this point may seem straightforward, it is critically important.
Since RDF is descriptive and any statement can be said about anything,
there is nothing that says that d:Person01 will not have another coordinate
associated with it. Since people can move around, it is not uncommon that an
individual may be associated with multiple sets of coordinates. Without using
the intermediate object to group the latitude/longitude values, the values
would get mixed up, as in the following example:

d:Person01 d:hasLatitude “38.88965“;

d:hasLatitude “39.88934“;

d:hasLongitude “-77.03536“;

d:hasLongitude “-10.00000“;

In this example, it is unknown which latitude and longitude go together.
This means that there are four possible pairings, two of which are completely
inaccurate.

Managing Bad Data
This last section is not really a best practice. Rather, it’s a warning. There is
bad data out there: poorly formatted, invalid, and not adhering to its own
schema. It is all out there, and inevitably it will have to be processed and
used in Semantic Web applications. The question that must be answered when
dealing with bad data is, when do you clean it? The answer may be to clean
data when it is exposed from the data source via an RDF interface. It could
be cleaned when any necessary translation is being performed on the data to
bring it into the knowledge model of the application. It could be dealt with at
the point when it is being displayed to the user.

When to fix bad data depends on the application and the developer and the
client. There is no correct answer. Simply heed the warning, and be aware of
the fact that it is out there and if not dealt with, it can wreak havoc on your
Semantic Web applications, causing unexpected errors and unusual behavior.

Summary

This chapter is one of the capstones of this book. After everything that you’ve
explored and learned about, this chapter provides a look back with an eye
toward how everything fits together into a few sample architectures and
in terms of some important best practices. Through this chapter you have
seen where protocols and languages fit, how components go together and
are arranged as part of a greater application, and how many of the different
Semantic Web architectures are derived from the same set of building blocks.
By using this chapter, you should be prepared to start high-level system
designs that use these building blocks to meet your own requirements.
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Moving Forward
‘‘When it comes to the future, there are three kinds of people: those who let it
happen, those who make it happen, and those who wonder what happened.’’

—John M. Richardson, Jr.

This chapter exposes several representative advancements and extensions
within the Semantic Web community. Clearly, the Semantic Web is active and
growing in many directions—a healthy sign. In addition, the scale and scope
of the Semantic Web itself and its supporting information base have opened
up new challenges in harnessing the vastness of so much information from so
many sources.

We explore these advancements not just by explanation but also, where
possible, through working code examples and illustrations. You’re encouraged
to download and explore these approaches to gain hands-on confidence for
future possibilities and direction. In many cases, these advancements strike
at core challenges innate to large-scale, dynamic information exploitation—an
area made possible only relatively recently by the vastness caused on one end
by terabyte drives and on the other by the immensity of the Internet itself.

Virginia Tech has a nice slogan: ‘‘We invent the Future.’’ In many ways
this applies to the Semantic Web. The potential reach and expressive power
of the Semantic Web offer entirely new opportunities to use and explore
information. Traditional information applications are limited by both scope
and expressivity. Traditional applications can neither tap into the enormity
nor fully express its needs. This leaves systems struggling to put the pieces
together or, more likely, remaining unaware of the larger possibilities. The
two forces of scope and expressivity limit the vast potential to a small
fraction of what is possible with traditional approaches. The challenge to

489
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expose semantics to an application, à la machine readability, opens up this
information to the power of Moore’s Law and Metcalf’s Law. Moore’s Law
predicts the growing power of computer resources. Metcalf’s Law predicts
the power of networks. Both of these laws can apply to the Semantic Web. The
possibilities, and corresponding challenges, are just beginning to emerge.

Semantics form the next wave to improving our ability to manage and master
the growing information base and its many relationships. The Semantic Web
by no means addresses it all, but it is solidly on the right path.

We place these representative Semantic Web advancements into four cate-
gories:

Advancing ontologies—The number and coverage of ontologies
continue to grow. This creates the need for repositories to store
them and registries to find them. In addition, new standards are
emerging to link ontologies together. Finally, all these ontologies
create a need to have versioning and metrics to determine quality
and properly match an ontology with a given application.

Advancing integration—Bringing two or more ontologies together
creates new value through the combination of the information
but also incurs some tough challenges because the ontologies
may contain conflicts, duplication, and semantic differences.
Here we’ll look at distributed queries to bridge the integration
and automatic alignment to aid in normalizing the semantics.

Advancing reasoning—As machine readability improves with the
increase in ontologies, reasoning capabilities can offer even more value.
This creates several challenges for reasoning solutions. Reasoning must
address the multitude of different rule engines and reasoners through
standards. Reasoning must address the fuzziness of real life with prob-
abilities and statistics. Reasoners must help establish trust among the
many data sources, which is especially vital in large-scale integration.
Finally, reasoners must improve their performance if they are to meet all
these challenges effectively and handle the growing information base.

Advancing visualization—Human readability is also important, and
innovation continues to struggle with new ways to visualize the
richness of the Semantic Web. Many of the interfaces are revealing
information textures and views never before seen. It is uncertain
whether these images are merely curious novelties or if they actually
reveal deep secrets not yet understood. It is up to us to decide.

This chapter does not predict the future but rather hopes to ignite your
interest and possible contributions to help the Semantic Web achieve its
potential. The trends are clear—more data in more formats and in more
locations. Semantics offer a path to make more, better.
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Advancing Ontologies

The vastness and richness of available ontologies requires several advance-
ments in order for you to fully take advantage of them. First you have to
find them. For this you need methods to find and obtain the ontologies. Thus,
ontology registries, repositories, and linked data offer a solution. Next you
must verify that the ontology is compatible with your usage, hence the need
for versioning. Finally, you need to determine the quality and appropriateness
of your selected ontology, hence the need of absolute and relative metrics.

The growth in the number and types of ontologies produces a need to store
them, find them, version them, measure them, and link them together.

Ontology Repositories and Registries

The number and types of ontologies continue to expand. This creates a
significant challenge. How do you find a suitable ontology?

As you learned earlier, it is usually better to directly use or build on an
existing ontology. Your application benefits from the existing work rather
than starting from scratch. This is vital in both general, upper ontologies and
specific domain ontologies. The upper ontologies struggle with definitions
and relationships across a wide scope. The domain ontologies, dealing in
depth within a given area, contain expertise possibly beyond your team. And,
of course, if solutions reuse the same ontologies, integrating them later is much
easier. These ontologies continue to advance, and your application can freely
incorporate these advancements.

This challenge of finding suitable ontologies created several ongoing solu-
tions for ontology repositories and registries. The repositories and registries
vary based on two important factors: the searchable metadata they offer to find
a suitable ontology, and whether they store or reference the ontology. Storing
the ontology has the advantage of protecting it, possibly offering multiple
versions. Referencing the ontology no longer requires storage at the repository
site and provides linkage to the latest version of the ontology. This reference
comes at the expense of losing control over the ontology. The linked ontology
may be unavailable, be modified in an incompatible fashion, or simply be
deleted. Correspondingly, the linked ontology may offer the most up-to-date
version.

An ontology repository stores ontologies, whereas an ontology registry
manages metadata and references the ontology rather than storing it. Typically
an ontology repository contains a registry, but not the other way around.
These guidelines are not rigidly followed by the various projects. You will find
registries that also are repositories.
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The OpenOntologyRepository (OOR) (http://ontolog.cim3.net/cgi-bin/
wiki.pl?OpenOntologyRepository Scope) aims to build a reference reposi-
tory: a repository that allows the creation, sharing, searching, and management
of ontologies as well as links to database and XML schema–structured data
and documents. With similar goals to OOR, eXtended MetaData Registry (or
XMDR, which is found at http://www.xmdr.org/overview.html) has similar
aims. It employs the ISO/IEC metadata registry standards, which cover many
knowledge representations including RDF and OWL. There is a demonstration
of the registry at http://bambam.lbl.gov:8080/xmdr/text.jsp. You can
search using several techniques, including a SPARQL query. Figure 15-1
illustrates XMDR search.

Figure 15-1 XMDR Ontology Registry

Linked Data
In addition to having repositories and registries, another approach to dis-
tributing the wealth of ontologies and related data is using best-practice
methods to allow the creators to appropriately link them together. That
is the goal of Linked Data, a project to create useful links to existing
ontologies and data sources. The project was succinctly outlined by Tim
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Berners-Lee (http://www.w3.org/DesignIssues/LinkedData.html). The links
offer the pathways to follow an interesting direction intelligently. This type of
exposure aims to enrich our Semantic Web navigation through practices that
expose the data in a standard, accepted way. Linked Data outlines four key
rules (taken directly from the preceding document):

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information.

4. Include links to other URIs, so that they can discover more things.

Although vague, these basic guidelines have already forged large participa-
tion. This type of linking creates a browsable graph in a friendly, usable way.
The Linked Data project uses the Tabulator to offer a friendly path through
the linked data minus RDF vernacular and graphics. It makes extensive use
of Gleaning Resource Descriptions from Dialects of Languages (GRDDL – see
http://www.w3.org/TR/grddl/).

Instead of RDF graph images and URI-based statements, the Tabulator
contains several views based on simple tables, maps, calendars, timelines, and
any other friendly data exposure one can create. Figure 15-2 illustrates the
FriendTracker ontology via the Tabulator.

Tabulator is a FireFox extension. The extension is activated when the browser
receives an RDF file and displays it accordingly.

Versioning
As ontologies proliferate, versioning of ontologies becomes a challenge and a
concern. The ease with which ontologies evolve, import other ontologies, and
even possibly disappear makes versioning critical. The dynamics and growth
of complex knowledge representations present a real challenge to maintain
critical applications that depend on them. Several research efforts step up to
this challenge.

As noted by Michel Klein in his ontology versioning talk (see http://www.

cs.vu.nl/∼mcaklein/presentations/2001-07-31-SWWS-Stanford.pdf), com-
patibility between versions falls into four categories:

Fully compatible revisions—All combinations of instance data and
ontologies provide correct operations.

Backward compatible revisions—Newer schema versions can correctly
use older instance data.

Upward compatible revisions—New instances can use older ontologies.

Incompatible revisions—The revision breaks all older versions.
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Figure 15-2 Tabulator RDF viewer

The OWL header provides the basic capture of critical versioning informa-
tion with following constructs:

owl:versionInfo—Basic information regarding the version.

owl:priorVersion—Reference to another ontology noted as this ontol-
ogy’s predecessor.

owl:backwardCompatibleWith—Similar to priorVersion but adds the
notion that it maintains compatibility.

owl:incompatibleWith—Specifically points out ontologies that this
ontology is not compatible with. This is typically used when a new ontol-
ogy is introduced that is not compatible with a previous ontology.

These fields provide the basic version information, but they rely on the imple-
mentation to carry out the necessary reaction. Tools will, no doubt, consume
this information when the demand for using mixed versions increases.
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Ontology Metrics
The ‘‘goodness’’ of an ontology is a controversial topic. The goodness measure-
ment has two distinct types: absolute and relative. Absolute measurements
can look for errors and conflicts—does it follow the rules. Relative measure-
ments can determine an ontology’s effectiveness for a given application—does
it do the job. Both can help determine which ontology to select for your
application.

Some efforts have stepped up to this large challenge. Although it has
been around for a few years, OntoClean provides some absolute measure-
ments, referring to them as domain-independent properties. These measurement
properties are as follows.

Identity—Enables the instance or individuals to remain unique despite
possible changes. A substance that changes shape may retain unity
because it is still the same substance. A person, john, remains the same,
unique person despite growing up, getting married, moving to anther
town, getting a different job, becoming a student, and the like. The
ontology must respect this identity throughout all of its statements.

Rigidity—A property is rigid if it is essential to all instances. Anti-rigid
is the opposite. For example, ‘‘john is a person’’ would be rigid, whereas
‘‘john is a student’’ is not rigid. Thus, once an entity is declared a per-
son, this cannot be changed, but declaring the person a student can.

Unity—An individual represents a whole if and only if it is united by
one or more properties that apply to all. The ontology must be clear
in asserting unity. Either a set of parts is essential to the larger indi-
vidual or it is not. For example, a marriage must contain two people.
A married person cannot be by himself or herself in a marriage.

Dependence—A property is dependent if each instance implies
the existence of another instance. Therefore, the ontology can-
not have one without the other. When a property or ‘‘part of’’
is essential to a containing class, the containing class is depen-
dent on that property. For example, pizza must contain crust.
It is dependent on crust for its very existence. Pizza is not
dependent on tomato sauce, as a white pizza illustrates.

These dimensions help determine the quality of the ontology and identify
inherent logical conflicts.

Protégé offers an implementation of OntoClean. Figure 15-3 displays the
SIOC ontology.

OntoClean points out the discrepancies regarding the four traits listed
previously. These refer to structural, absolute quality issues. OntoClean does
not determine the usability of the ontology for a given application.
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Matching an ontology to a given application offers a method as opposed
to a tool. OntoMetric provides a relative measurement of an ontology’s
effectiveness for a given application. The OntoMetric methodology contains
five steps (which are taken from ‘‘D1.2.3 Methods of Ontology Evaluation,’’
Jens Hartmann et al, and found at http://knowledgeweb.semanticweb.org/
semanticportal/deliverables/D1.2.3.pdf :

1. Specify the objectives of the application.

2. Build a decision tree based on content, language, methodol-
ogy, tool, and cost. This outlines the requirements.

3. Construct a pair-wise matrix within the decision tree.

4. For each ontology, assess its characteristics (currently the effort contains
over 160 characteristics).

5. Combine vectors and weights to determine a solution.

Figure 15-3 OntoClean view in Protégé

This method, although subjective and complex, can produce a useful answer.
Clearly much work needs to be done in evaluating and measuring ontologies.

Formal methods provide value in forcing a hard look at the ontologies.
Selecting an ontology is a fundamental factor in building a Semantic Web
application. Time invested in studying the options for such a crucial component
is time well spent.
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Advancing Integration

Combining information from various ontologies and knowledgebases can
greatly increase the value of the information. Fundamentally, the nature of
the Semantic Web enables easy integration. These approaches help combine
distributed ontologies and also align their semantics. Here we discuss several
approaches to advance integration.

Semantic Pipes
Mash-ups are a favorite mechanism in Web 2.0 to integrate API-accessible
applications and data sources. Yahoo Pipes took this a step further by providing
a visual and programming metaphor—a pipe. Similar to Unix pipes, a pipe
takes input, possibly transforms it, and then outputs it to another pipe. The
chain continues until the set of pipes produces the desired end result.

Semantic pipes take this concept into the semantic realm. A group that’s
working on this concept is DERI Web Data Pipes (http://pipes.deri.org/).
They have produced a working, open-source approach to richly combining, in
real time, many available semantic sources.

Their site offers several examples and a working semantic pipe editor.
Figure 15-4 illustrates a simple combination of two of our ontologies.

Figure 15-4 Simple semantic pipe
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The left side of this screen lists the various assembly primitives. You
simply drag them into the editor window. Reasoning can occur through direct
reasoning processing or by using the graph generated from a CONSTRUCT query,
as illustrated in Chapter 6, ‘‘Discovering Information.’’ The DERI pipes can
also use other types of data formats, including XML and RDFa.

Distributed Queries
Simply put, the Semantic Web is distributed. This gives an application two
major choices in employing the vast amount of distributed Semantic Web data:
copy to a single location or perform a distributed operation such as a query.
The former is fraught with two major problems: latency and scale. Smaller
applications may not suffer too much from these problems. Bigger applications
may find them intractable.

Distributed queries address the distribution head-on. There are several
methods to do this, and one of them you already have some familiarity
with—D2RQ, seen in chapter 9.

The main factor regarding distributed queries is how involved or coupled
you want your application to be with the multiple data sources. Highly
coupled distributed queries are straightforward but form cumbersome and
brittle solutions. Your application can individually query each data source
using a CONSTRUCT query. The returned graphs aggregate in a local storage.
After acquiring all the graphs, your application can ask a query of the
aggregation. Of course, this requires your application to interact with each
data source and detail its role in the aggregate model. This coupling inhibits
change in both the queries and the data sources. Thus, if the data sources are
out of your control (which is typical), the overall application will likely suffer
from its brittleness.

D2RQ can extend the capability to relational databases. This allows you
to query multiple databases. However, D2RQ still requires tight coupling
between the databases and your application. The following code demonstrates
how to create a D2RQ model from two databases:

MappingGenerator map1 = new MappingGenerator(jdbcURI1);

MappingGenerator map2 = new MapptingGenerator(jdcbcURI2);

// Set up FileOutputStream

map1.writeMapping(map1FS);

map2.writeMapping(map2FS);

relDB1 = new ModelD2RQ(“map1.n3);

relDB1.add( new ModelD2RQ(“map2.n3);
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The example starts with generating the maps from each data source using
the MappingGenerator() method. The mapping ontology has been written
out. You can create the first model and then add the second to the first using
the Jena method add(). Now a query aimed at relDB1 could cross both data
sources; the query must contain references to both. This is what creates the
coupling.

In contrast, a loosely coupled distributed query creates a source and domain
layer, as shown Figure 15-5.

Relational
Database

Web
Service

SPARQL
End Point

Source
Ont

Domain
Ont

I/O
Method Source

Ont

I/O
MethodSource

Ont

Mapping MappingMapping

I/O
Method

OWL OWL OWL

SWRL SWRL SWRL

Figure 15-5 Loosely coupled distributed query

Each source has a source ontology that closely reflects the native source
along with its access methods. The native source could be a web service, a
relational database, SPARQL endpoint, or virtually any data source that could
translate to an ontology. The source ontology not only has the data elements
but also details the method necessary to get the data elements, such as a SQL
call or web service call. On the user side, the distributed query starts with the
domain ontology. The domain ontology remains the sole focus of the user.
All questions and responses exist within this ontology. Now the answers all
lie in the source ontologies. The missing piece maps the domain ontology to
the various source ontologies. You can do this using SWRL rules or similar
constructs. BBN maintains a working, deployed version of this approach called
Asio ( a species of OWL, see http://asio.bbn.com).

If you keep your data sources limited to SPARQL endpoints, DARQ
(http://darq.sourceforge.net) provides a method to perform federated
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queries. DARQ extends the ARQ portion of Jena. The ARQ portion deals with
query functionality. DARQ is still in an early release.

DARQ references a configuration file that describes each endpoint and its
limitations, including available data, access pattern limitations, and statistical
information useful for optimization. Once established, your application simply
runs a query with Jena as before. The federation is transparent to the query,
although there are limitations to the query, as noted at the DARQ website.

Alignment
As noted in the preceding ontology registry section, there is a growing list
of ontologies, and we cited several examples. The various ontologies may
capture general concepts or specific domains or combinations. Hopefully, a
designed ontology serves its initial purpose well. But what if you want to
combine information across multiple ontologies? In Chapter 10 we illustrated
a situation in which the various ontologies were aligned for the FriendTracker
application. It was a manual process using the various constructs of OWL
and SWRL, such as equivalentClass to bind the two ontologies. Clearly, a
manual approach limits the sharing of knowledge and services. It completely
forestalls ad hoc, dynamic interrogation of multiple ontology-based sources
and services.

Ontology alignment represents the constructs (such as adding an
equivalentClass statement) required to bind two ontologies together. The
alignment constructs can exist as their own ontology to be shared, improved,
and reasoned over, independent from the ontologies aligned by the constructs.

Several efforts are under way to align ontologies automatically. In fact,
there is a yearly competition to create useful alignment algorithms, spon-
sored by the Ontology Alignment Evaluation Initiative (OAEI is found at
http://oaei.ontologymatching.org/).

Automatic alignment presents several problems if it is to work on a large
scale, which, of course, is the only useful goal. The first issue is the need to
express alignment in a standard way—a standard expression of alignment. The
second is to create a programming framework to standardize the logistics of
alignment. And third, the framework must offer a Plug and Play environment
to hold various alignment algorithms. This environment not only allows
experimentation but also allows the alignment methods to tune and sequence
various algorithms depending on their specific alignment goals and the types
of ontologies.

This is exactly what the Alignment API (which you can find at
http://alignapi.gforge.inria.fr/) offers, which is sponsored by OAEI.
The Alignment API offers a standard way to express alignment, standardizes
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the logistics of alignment, and offers a Plug and Play environment for various
alignment algorithms.

Now let’s examine a coding example that aligns the two ontologies. The
OAEI website provides some excellent sample ontologies for the test. You can
apply them to ontologies that we have used in previous examples in this book.

The API follows several steps to create an alignment:

1. Create two URI objects, one to reference each ontology.

2. Create the desired alignment process(es) associated with an alignment
algorithm.

3. Bind each alignment process to the URI objects.

4. Compute the alignment.

5. Threshold the alignment results.

6. Output the alignment.

7. Optionally compare alignment results using different algorithms.

Here is a straightforward example of the alignment API:

public class BasicAlign {

static String ont1 =

“http://semwebprogramming.org:8099/ontologies/friendtracker.rdf“;

static String ont2 = “http://semwebprogramming.org:8099/ontologies/

sioc.rdf“;

static String ontDir = “/var/www/html/ontologies/“;

public static void main(String[] args) {

System.out.println(“Starting Alignment“);

try {

URI uri1 = new URI(ont1);

URI uri2 = new URI(ont2);

Parameters parm = new BasicParameters();

AlignmentProcess apSubsDistName =

new SubsDistNameAlignment();

apSubsDistName.init( uri1, uri2 );

apSubsDistName.align((Alignment)null,parm);

apSubsDistName.cut(“prop“, .6);

// Set up PrintWriter(s)

File fileHTML = new File(OntDir +

“SubsDistNameAlignFT.html“);
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PrintWriter pwHTML = new PrintWriter(fileHTML);

File fileSWRL = new File(OntDir +

“SubsDistNameAlignSWRLFT.xml“);

PrintWriter pwSWRL = new PrintWriter(fileSWRL);

File fileOWL = new File(OntDir +

“SubsDistNameAlignFT.owl“);

PrintWriter pwOWL = new PrintWriter(fileOWL);

AlignmentVisitor avHTML =

new HTMLRendererVisitor(pwHTML);

AlignmentVisitor avSWRL =

new SWRLRendererVisitor( pwSWRL );

AlignmentVisitor avOWL =

new OWLAxiomsRendererVisitor(pwOWL);

apSubsDistName.render(avHTML);

apSubsDistName.render(avSWRL);

apSubsDistName.render(avOWL);

// Flush and close the files

pwHTML.flush(); pwHTML.close();

pwSWRL.flush(); pwSWRL.close();

pwOWL.flush(); pwOWL.close();

} catch (Exception e) { e.printStackTrace(); }

System.out.println(“Alignment Complete“);

}

The example starts with creating two URIs, one for each of the ontologies.
Here we use the friendtracker.rdf ontology and Semantically-Interlinked
Online Communities (SIOC) ontology. We then declare an alignment process
and use the SubsDistName algorithm. This computes a substring distance
based on the class name. The cut() method filters out the lower-scored
matches from the algorithm. Although it’s used here for illustrative purposes,
the algorithm still produces some useful results. The final step creates an Align-
mentVisitor to enable output in the desired format of the alignment results.

We now examine three types of output:

HTML format for human consumption

SWRL rules

OWL constructs

The latter two provide statements to bind the two ontologies together in a
sharable, reusable format. The alignment process, illustrated in Figure 15-6,
found five useful bindings between the two ontologies. Your application could
choose to assert these statements to align the identified classes.
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Figure 15-6 Alignment results via HTML

These bindings were all above our filter threshold of .6. Each match contains
a relation strength ranging from .76 to 1 (a perfect match). Let’s examine the
results in more machine-usable formats, OWL and then SWRL. First, the OWL
statements:

<owl:DatatypeProperty rdf:about=“http://semwebprogramming.net/2008/

friendtracker/ont#hasTitle“>

<owl:equivalentProperty rdf:resource=“http://rdfs.org/sioc/

ns#title“/>

</owl:DatatypeProperty>

<owl:Class rdf:about=“http://semwebprogramming.net/2008/friendtracker/

ont#Post“>

<owl:equivalentClass rdf:resource=“http://rdfs.org/sioc/ns#Post“/>

</owl:Class>

<owl:DatatypeProperty rdf:about=

“http://semwebprogramming.net/2008/friendtracker/ont#hasContent“>

<owl:equivalentProperty rdf:resource=“http://rdfs.org/sioc/

ns#content“/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about=

“http://semwebprogramming.net/2008/friendtracker/ont#hasDescription“>

<owl:equivalentProperty rdf:resource=“http://rdfs.org/sioc/
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ns#description“/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about=

“http://semwebprogramming.net/2008/friendtracker/ont#isNamed“>

<owl:equivalentProperty rdf:resource=“http://rdfs.org/sioc/ns#name“/>

</owl:DatatypeProperty>

Here the alignment process used equivalence to map the classes and prop-
erties. Next are the corresponding SWRL rules:

<ruleml:imp>

<ruleml: body>

<swrl:datavaluedPropertyAtom swrlx:property=

“http://semwebprogramming.net/2008/friendtracker/ont#hasContent“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

<swrl:datavaluedPropertyAtom>

</ruleml: body>

<ruleml: head>

<swrl:datavaluedPropertyAtom swrlx:property=“http://rdfs.org/sioc/

ns#content“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

</swrl:datavaluedPropertyAtom>

</ruleml: head>

</ruleml:imp>

<ruleml:imp>

<ruleml: body>

<swrl:datavaluedPropertyAtom swrlx:property=

“http://semwebprogramming.net/2008/friendtracker/

ont#hasDescription“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

<swrl:datavaluedPropertyAtom>

</ruleml: body>

<ruleml: head>

<swrl:datavaluedPropertyAtom swrlx:property=

“http://rdfs.org/sioc/ns#description“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

</swrl:datavaluedPropertyAtom>

</ruleml: head>

</ruleml:imp>

<ruleml:imp>

<ruleml: body>

<swrl:datavaluedPropertyAtom swrlx:property=
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“http://semwebprogramming.net/2008/friendtracker/ont#isNamed“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

<swrl:datavaluedPropertyAtom>

</ruleml: body>

<ruleml: head>

<swrl:datavaluedPropertyAtom swrlx:property=

“http://rdfs.org/sioc/ns#name“/>

<ruleml:var>x</ruleml:var>

<ruleml:var>y</ruleml:var>

</swrl:datavaluedPropertyAtom>

</ruleml: head>

</ruleml:imp>

The SWRL rules declare the analogous equivalence compared with the OWL
constructs. The SWRL rules are one-directional, but the OWL statements are
bidirectional.

These formal alignment results can be shared, interrogated, or enriched in
future efforts. This creates a need to store and find these alignments.

The Alignment API project has also produced a server to address the storage
and retrieval of alignment artifacts. The server offers several interfaces: HTML,
JADE/FIPA ACL, and HTTP/SOAP. The services include finding a similar
ontology, aligning two ontologies, thresholding alignment results, storing the
alignment, finding an alignment, and retrieving an alignment.

The API works with other types of tools such as WordNet (http://wordnet
.princeton.edu/). WordNet is a large lexical database of English, essentially
forming an excellent source of synonyms useful in alignment activities. You
can take our basic example and change the AlignmentProcess to one that uses
WordNet.

AlignmentProcess ap = new JWNLAlignment();

Finally, you can obtain statistics that compare various alignment techniques
with each other. For this you use the PRecEvaluator class. The code is shown
here:

PRecEvaluator eval =

new PRecEvaluator(ap1, ap3);

eval.eval(p);

System.out.println(

“Precision = “ + eval.getPrecision() +

“ Recall = “ + eval.getRecall() +

“ F = “ + eval.getFmeasure() );
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This approach illustrates the similarities between two alignment methods,
with the first parameter passed to the PRecEvaluator() method being the
basis for comparison. Once evaluated, methods return precision, recall, and F
statistics. Precision demonstrates how many values in the second argument
match with the first. Recall indicates how many values should have matched.
The two together summarize into the F statistic. These values determine
convergence or dissimilarity between multiple approaches. Also, keep in
mind that you can use algorithms sequentially to improve results.

Advancing Reasoning

Reasoning amplifies information through logical deductions. Simply put, rea-
soning increases the information value. This section surveys three expanding
areas: rule format standards, probabilistic reasoning, and trust reasoning.

Rule Interchange Format (RIF)
As you saw in our examples, several rule languages enable reasoning. We
examined only a few and, given the adoption trends and fundamental dif-
ferences, it is unlikely that one will become the standard. For many, the best
rule language is simply the one that they know. This presents you with a
dilemma—which one to pick?

RIF softens the blow of picking a rule language. Rather than fight it out and
try to pick a winner, RIF approaches it in a different way by coming up with a
standard interchange between rule languages. This way you could map rules
from one language to another, analogous to a rule translator. W3C chartered
a group in late 2005 to address this challenge.

The following is taken from the W3C mission charter (which you can find
at http://www.w3.org/2005/rules/wg/charter.html):

The Working Group is to specify a format for rules, so they can be used across
diverse systems. This format (or language) will function as an interlingua into
which established and new rule languages can be mapped, allowing rules written
for one application to be published, shared, and re-used in other applications and
other rule engines.
Because of the great variety in rule languages and rule engine technologies, this
common format will take the form of a core language to be used along with a set of
standard and non-standard extensions. The Working Group is chartered to first
establish the extensible core and possibly a set of extensions, and then (in Phase
2) to begin to specify additional extensions based on user requirements. These
extensions need not all be combinable into a single unified language.
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This mission is part of W3C’s larger goal of enabling the sharing of information in
forms suited to machine processing, as seen in several application areas presented
at the 2005 W3C Workshop on Rule Languages for Interoperability:

Rules themselves represent a valuable form of information for which there is not
yet a standard interchange format, although significant progress has been made
within the RuleML Initiative and elsewhere. Rules provide a powerful business
logic representation, as business rules, in many modern information systems.

Rules are often the technology of choice for creating maintainable adapters
between information systems.

As part of the Semantic Web architecture, rules can extend or complement
the OWL Web Ontology Language to more thoroughly cover a broader set of
applications, with knowledge being encoded in OWL or rules or both.

W3C has made significant progress, which you can track at their wiki site:
http://www.w3.org/2005/rules/wiki/RIF Working Group. Here you can find
the use case and requirements documents, the core language, and other seminal
documents dealing with translations to various rule implementations. The
effort allows extensions, which eliminates merely producing a lowest-common
denominator solution. This effort should at least allay some of your concerns
in using a specific rule language.

Probabilistic Reasoning

A key reality of our world is the uncertainty that surrounds it. Few items are
clearly black or white but rather maintain a degree of grayness. Probabilities
quantify this grayness. Reasoning across probabilities for independent and
dependent events presents valuable results. For example, you could calculate
the simple probability of a specific flight arriving on time given its history. But
how is this probability impacted by weather, other flights, the type of aircraft,
and so on? This requires the aggregation of various probabilities, and that
leads to the usefulness of probabilistic reasoning.

The native characteristics of OWL allow the insertion of probabilities in
a relation, as with any attribute. Currently, no standard way exists to
express it. Therefore, your application would have to do all the interpre-
tations and calculations—a large task. Anyone who has taken a statistics
course knows that the statistics surrounding data are not straightforward.
Thankfully, several solutions have emerged to deal with this important
part of expressivity—the uncertainty associated with a relationship. These
approaches addresses three key areas: how to express probability, how to
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infer probabilities, and how to explain the inference. We’ll examine three such
solutions:

Pronto, an extension of the Pellet reasoner

PR-OWL, a Bayesian extension to OWL

Fuzzy ontologies

Pronto, a partner to the Pellet reasoner discussed previously, is still in an
early release but already has made significant progress in all three areas.
Pronto offers the latest download along with documentation and examples at
http://pellet.owldl.com/pronto. Pronto extends the Pellet reasoner that we
used earlier in three ways:

Adding probability statements to an OWL ontology

Inferring new statements based on the probability

Explaining the results

Pronto provides a useful example on breast cancer probabilities. First let’s
look at the ontology capture of probability expressions.

<!-- Any woman has a 12.3% risk of lifetime breast cancer -->

<owl:Axiom>

<rdf:subject rdf:resource=“#Woman“/>

<rdf:predicate rdf:resource=“&rdfs;subClassOf“/>

<rdf:object rdf:resource=“#WomanUnderLifetimeBRCRisk“/>

<pronto:certainty>0;0.123</pronto:certainty>

</owl11:Axiom>

<!-- If a woman has BRCA mutation,

then the risk is between 30% and 85% -->

<owl:Axiom>

<rdf:subject rdf:resource=“#WomanWithBRCAMutation“/>

<rdf:predicate rdf:resource=“&rdfs;subClassOf“/>

<rdf:object rdf:resource=“#WomanUnderLifetimeBRCRisk“/>

<pronto:certainty>0.3;0.85</pronto:certainty>

</owl:Axiom>

<!--

Relationships between risk factors (from statistics)

-->

<owl:Axiom>

<rdf:subject rdf:resource=“#AshkenaziJewishWoman“/>

<rdf:predicate rdf:resource=“&rdfs;subClassOf“/>

<rdf:object rdf:resource=“#WomanWithBRCAMutation“/>

<pronto:certainty>0.025;0.025</pronto:certainty>

</owl:Axiom>

The code demonstrates the expression of probabilities. The first case has a
probability range for a woman of 0 to 12.3%. The second case has a range
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between 30% and 85% for a subclass of Woman—WomanWithBRCAMutation. The
third case demonstrates the capture of relationship between risk factors.

Pronto supports five types of reasoning:

Entailments between classes

Entailments between individuals

Satisfiability

Consistency

Improbability classes

Running Pronto to generate entailments between the two classes of Ash-

kenaziJewishwoman and WomanUnderLifetimeBRCRisk results in the following
output:

Query : entail

Result: http://clarkparsia.com/pronto/cancer ra.owl#

Helen:http://clarkparsia.com/pronto/cancer ra.owl#

WomanUnderModeratelyIncreasedBRCRisk[0.65;0.65]

Explanation:

Explaining the generic constraint 33:

(WomanUnderModeratelyIncreasedBRCRisk| TOP )[0.65;0.65]:

Lower bound is because of:

[[15: (WomanTakingProgestin| TOP )[1.0;1.0], 16:

(WomanTakingEstrogen| TOP )[1.0;1.0], 0:

(WomanUnderModeratelyIncreasedBRCRisk|PostmenopausalWomanTaking-
EstrogenAnd

Progestin)[0.65;0.65]]]

Upper bound is because of:

[[15: (WomanTakingProgestin| TOP )[1.0;1.0], 16:

(WomanTakingEstrogen| TOP )[1.0;1.0], 3:

(WomanUnderWeakelyIncreasedBRCRisk|
PostmenopausalWomanTakingEstrogenAndProgestin)[0.35;0.35]], [15:

(WomanTakingProgestin| TOP )[1.0;1.0], 16:

(WomanTakingEstrogen| TOP )[1.0;1.0], 0:

(WomanUnderModeratelyIncreasedBRCRisk|
PostmenopausalWomanTakingEstrogenAndProgestin)[0.65;0.65]]]

The output provides the answer to the query plus its justification.
PR-OWL takes a different approach by introducing a Bayesian extension

to OWL. It is an open research project at http://www.pr-owl.org. PR-OWL
extends OWL to provide a framework for authoring probabilistic ontologies.
It is based on the Bayesian first-order logic called Multi-Entity Bayesian
Networks (MEBN). Bayesian inference uses continuously collected evidence
to update the probability. The openness of OWL allows the consideration of
incoming statements in forming a probability.

The PR-OWL effort offers an interesting example of a StarTrek ontology
based on PR-OWL. The ontology deals with using probability to detect enemy
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ships (as opposed to James T. Kirk’s or Jean-Luc Picard’s intuition). Figure 15-7
offers a small view of the ontology that is reflected in Protégé.

Figure 15-7 PR-OWL view in Protégé

PR-OWL addresses the first challenge—how to capture probabilities in
OWL—and requires a reasoner to apply it.

Fuzzy ontologies take a slightly different approach by managing ill-
structured, uncertain, or imprecise information that is contained in the knowl-
edgebase (‘‘A Fuzzy Ontology-Approach to Improve Semantic Information
Retrieval’’ by Siliva Calegari and Elie Sanchez can be found at http://c4i.gmu
.edu/URSW/2007/files/papers/URSW2007 P3 CalegariSanchez.pdf). Fuzzy
ontologies relate information statistically with a semantic correlation. These
correlations generate weights that associate various entities within the know-
ledgebase. This can more closely reflect real-world situations where the user
expresses a ‘‘sort of’’ relationship.

Trust: Proof Markup Language
Trust is the cornerstone of any relationship. How much you trust a friend, a
co-worker, or a spouse determines the value of the relationship. This is, of
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course, also true with data. The trust you put into the data determines the
usefulness of that data to aid an objective, such as a critical decision.

Traditionally, systems created trust through careful protection of the data
source. Databases were carefully protected in locked rooms and by obser-
vant administrators, who ensured high integrity and controlled access. This
approach can extend somewhat to controlled documents and the like. How-
ever, modern distribution combined with many formats and a varying level
of control erodes the traditions. These methods simply don’t scale. Yet your
applications still want to leverage all that information. This causes a new
problem—how do you establish trust with dynamic, distributed sources
combined with the deftness of the various reasoners?

This is exactly the area that Proof Markup Language (PML) sheds some
light on—trust. It offers an approach to explain how results were obtained and
what the results depended on. Collectively this is known as transparency. PML
enables the representation of explanations and computations of trust issues,
including aggregation of trust.

PML exists as three distinct ontologies to decompose trust:

PML-P (pmlp prefix)—Providence ontology ties instances to its provi-
dence attributes, such as creation data, authors, owners, and the like.

PML-J (pmlj prefix)—Justification ontology offers the encoding
justifications for conclusions. This includes standard logic processing,
inference steps, assumptions, extractions methods, and the like.

PML-T (pmlt prefix)—Trust relation ontology explains belief asser-
tions associated with instance information. PML-T complements
the other two ontologies by providing explicit representations
of trust assertions. This allows sharing of a trust conclusion.

PML-P provides the raw information or format to establish trust. PML-J
provides a standard way to express a justification. PML-T ties the two together
to establish a credible path to a given assertion for sharing. Your application
still needs to interpret this information.

The PML Primer provides a useful example (see http://inference-web.

org/2007/primer/). Following are some examples.
The scenario starts with a simple question: What type of food is Tony’s

specialty?
The following code contains PML-P:

<pmlp:Language rdf:about=

“http://inference-web.org/registry/LG/KIF.owl#KIF“>

<pmlp:hasName rdf:datatype=



512 Part IV ■ Expanding Semantic Web Programming

“http://www.w3.org/2001/XMLSchema#string“>

Knowledge Interchange Format (KIF)</hasName>

<pmlp:hasDescription>

<pmlp:Information>

<pmlp:hasURL rdf:datatype=

“http://www.w3.org/2001/XMLSchema#anyURI“>

http://logic.stanford.edu/kif/kif.html</hasURL>

<pmlp:/Information>

<pmlp:/hasDescription>

<pmlp:hasAuthorList>

<pmlp:AgentList>

<ds:first rdf:resource=

“http://inference-web.org/registry/PER/MGENESERETH.owl

#MGENESERETH“/>

<ds:rest>

<pmlp:AgentList>

<ds:first rdf:resource=

“http://inference-web.org/registry/PER/RFIKES.owl#RFIKES“/>

<pmlp:/AgentList>

</ds:rest>

<pmlp:/AgentList>

<pmlp:/hasAuthorList>

</pmlp:Language>

PML-P provides ownership and other attributes useful to establish trust.
Various conclusions help in answering the query. These steps are revealed
via PML-J. An example of such follows, concluding that TonysSpeciality

SHELLFISH has been directly assumed by the inference engine:

<pmlj:NodeSet rdf:about=

“http://inference-web.org/2007/primer/examples/proofs/tonys/

assumption.owl

#assumption“>

<pmlj:hasConclusion>

<pmlp:Information>

<pmlp:hasRawString rdf:datatype=

“http://www.w3.org/2001/XMLSchema#string“>

(type TonysSpecialty SHELLFISH)</pmlp:hasRawString>

<pmlp:hasLanguage rdf:resource=

“http://inference-web.org/registry/LG/KIF.owl#KIF“/>

</pmlp:Information>

</pmlj:hasConclusion>

<pmlj:isConsequentOf>

<pmlj:InferenceStep>

<pmlj:hasInferenceEngine rdf:resource=

“http://inference-web.org/registry/IE/JTP.owl#JTP“ />

<pmlj:hasInferenceRule rdf:resource=
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“http://inference-web.org/registry/DPR/Assumption.owl#Assumption“ />
</pmlj:InferenceStep>

</pmlj:isConsequentOf>

</pmlj:NodeSet>

This leads to sharing the trust in conclusions.

The following code is the small example from preceding example.

<pmlt:FloatBelief rdf:about=“#belief1“>

<pmlt:hasBelievingAgent rdf:resource= “#X“ />

<pmlt:hasBelievedInformation rdf:resource= “#info“ />

<pmlt:hasFloatValue>0.84</pmlt:hasFloatValue >

</pmlt:FloatBelief>

Trust is a critical factor in using the Semantic Web to address critical
issues. Would you want answers for the Semantic Web directing your medical
treatment or guiding financial decisions? Until trust is well established, many
critical applications will rely on traditional, small-scale approaches and thus
lose the advantages of a larger information base.

LarKC: The Large Knowledge Collider
No doubt you have seen by now that reasoning is powerful but also com-
putationally expensive. This last dilemma limits the scope of reasoning to
something less than the extremely large and dynamic data sources. Reasoning
remains trapped in smaller, controlled data sources.

LarKC attacks this very challenge—large-scale, dynamic reasoning. A
use case of the LarKC team requires reasoning across 10 billion triples in
less than 100ms. (‘‘Towards LarKC: A Platform for Web-Scale Reasoning’’
by D. Fensel et al; see http://www.larkc.eu/wp-content/uploads/2008/05

/larkc-icsc08.pdf). This wasn’t just shown to generate large numbers but is
based on realistic environments such as mobile phone reasoning needs.

The logical architecture consists of pluggable components that retrieve,
abstract, select, reason, and decide. The basic algorithm that is detailed in the
paper follows:

Loop

Obtain a selection of data (RETRIEVAL)

Transform to an appropriate representation (ABSTRACTION)

Draw a Sample (SELECTION)

Reason on the sample (REASONING)

if more time is available

And/or the result is not good enough (DECIDING) then

Increase the sample size (RETRIEVAL)
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else

exit

end if

end loop

This provides a framework to reason across the entire Semantic Web and
thus makes all the information even more valuable. LarKC not only makes
large-scale reasoning doable but also lowers the bar on small-scale reasoning
situations that compute in a much smaller window for faster decisions and
lower costs.

Additional efforts are also taking on the reasoning scalability challenge. Part
of these efforts include the IBM Scalable Highly Expressive Reasoner (better
known as SHER, which you can find at http://domino.research.ibm.com/
comm/research projects.nsf/pages/iaa.index.html). SHER indexes the
statements based on reasoning requirements. According to the website, SHER
can reason across seven million triples in seconds.

Finally, the new additions to OWL 2, specifically the OWL 2 profiles,
promote scalability by organizing its reasoning capabilities in better ways.

Advancing Visualization

Our exploration of the Semantic Web covered both machine and human
interactions. Reasoning deals directly with machine readability. Visualization
deals with human readability or human reasoning. The human ability to
recognize subtle patterns in huge data sets is clear. Edward Tufte points out
this capability throughout his series of excellent books on the visual displays of
information. One graphic outlined in his book The Visual Display of Quantitative
Information, barely an inch by an inch, effectively communicates over 25,000
data points. There is a lot of potential in visualizing portions of the Semantic
Web.

The Semantic Web, with its many relationships, naturally forms into a rich
graph. However, many attempts to provide a useful graph quickly become
buried in the sheer number of relationships, many of which are irrelevant to
a particular goal. Visualizing a large graph is challenging on several fronts,
but real progress continues. We’ll examine several solutions. They do not
necessarily answer the question as to how to view the data but rather raise
questions that have as yet been unanswered.

RDF-Gravity provides a visual tool with filters for RDF and OWL. It provides
text search and queries. Figure 15-8 shows a graph of the FriendTracker
ontology.
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Figure 15-8 FriendTracker ontology in RDF-Gravity

The right side of the screen allows the removal of various ontology artifacts.
Playing with this quickly illustrates the complexity even in a small ontology
like FriendTracker.

Aduna Cluster Maps serve up hierarchical data in interesting ways.
Figure 15-9 illustrates a cluster map.

In order to take advantage of the Aduna tool, your application must covert
to Aduna’s XML taxonomy. They supply an implementation API to assist in
the conversion. Once your application is in their format, the tool allows several
ways to filter and focus the data. The challenge here is converting a Semantic
Web subset into a useful taxonomy. Some of the views are truly exciting, but
that is not always the same as useful.

On the other hand, Semantic Interoperability of Metadata and Information in
unLike Environments (SIMILE: http://simile.mit.edu) offers several tools,
including Welkin and Longwell.

Welkin supplies a true macro view of an ontology and instance data. It
focuses on the overall shape and clustering. It illustrates the interconnectivity
and focus areas of the connections. Figure 15-10 shows the FriendTracker
ontology and the SIOC ontology.
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Figure 15-9 Cluster map

Figure 15-10 FriendTracker ontology and the SIOC ontology in Welkin
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The bottom viewing area contains some interesting and overlooked per-
spectives on the data. In Degree provides the number of edges that point to
the node. Out Degree provides the number of edges that start from the node.
Clustering Coefficient indicates how many node associates are friends with
one another, in other words, how tight the clustering is. This macro view can
provide some interesting and curious views into the overall data.

Longwell provides a more micro view into RDF data. It is a faceted browser
that allows emphasis based on more than one dimension. Figure 15-11 shows
an example ontology from the Longwell site.

Figure 15-11 Ontology from the Longwell site

Visualization tackles a tough problem—how to make visual sense out of
all the data and its relationships. No doubt this area will continue to expand
as you experiment with the many visual methods to present and navigate
the data. Although the tools we discussed are powerful representations, none
tackle the tougher challenges of expressions beyond RDF into OWL.
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Summary

Clearly the Semantic Web is active, flourishing, and evolving. This chapter
briefly introduced some of the major development activities. Many of the
advancements are a result of the new territory that has been established by
the Semantic Web because of its scale, distributed nature, trust, and so on:

Advancing ontologies illustrate the many techniques to man-
age the growing richness and volume of ontologies and their
associated data. These include the registration and retrieval of the
ontologies, linking standards between the ontologies, versioning ontolo-
gies, and ontology metrics.

Advancing integration illustrates methods to fully leverage knowledge-
bases distributed across the Internet. These included semantic pipes
to glue semantic sources together and distributed queries to gather
the data from multiple sources without the need to copy all that data
in one place or face the associated latency. Alignment aids in binding
multiple ontologies and result sets into a unified knowledgebase.

Advancing reasoning includes the standard effort to corral the many
rule and reasoning languages. Probabilistic reasoning inserts the
vagueness of the real world into ontologies. Trust tackles the need
to have some assurance that the collected knowledge from various
sources is credible and reliable. The knowledge collider addresses
the need for improved performance on large reasoning efforts.

Advancing visualization examines the success and challenges ahead
to allow users and their advanced pattern recognition and curiosity
skills to fully explore the richness of the Semantic Web. Clearly the rich-
ness of the Semantic Web and the innate human capabilities of pattern
recognition offer much promise in revealing information value.

Of course, all of these noted advancements are just a, representative sample
of the many Semantic Web development activities. Many more are out there,
and hopefully, with the aid of this book, you will be making your own
advancements.
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RDF

This appendix describes the Resource Description Framework (RDF), an
important technology for information representation that underlies many of
the concepts and tools that are described in the book. This appendix is intended
to serve as a concise refresher for the main RDF concepts and as a reference
for the syntax and general usage for the most commonly used constructions in
the book. RDF and the broader Semantic Web knowledge model are described
in much more depth in Chapter 3, ‘‘Modeling Information.’’

Basic RDF takes a generalized graph-based approach to representing infor-
mation so that it can be easily shared and mixed together. Like the notion of a
graph itself, RDF is not a language per se but is an abstract information model
that can be serialized in multiple ways. RDF represents information as a graph
of related statements. A statement is made up of three elements, a subject, a
predicate, and an object. In the graph, a statement represents a directed edge
between two nodes, with the predicate (also referred to as a property) repre-
senting the edge, and the subject and object representing nodes. RDF defines
two basic types of nodes: literals and resources. A literal is a concrete value,
such as a string or a number, and literals cannot be the subjects of statements,
only the objects. Resources represent, generally speaking, anything that can
be assigned an International Resource Identifier (IRI). Examples of resources
include people, things, locations, and concepts.
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A special exception to this conceptualization of a resource is the special type
of resource called a blank node. Blank nodes are existential variables used to
express ideas that are not about particular resources. An example of an idea
with an existential variable is ‘‘every book is written by a person.’’ In this case,
the ‘‘person’’ term in the sentence does not refer to any actual single person
but rather is used to express the idea that for every book, there is an author
who is a person. It would not preserve the meaning of the sentence to give that
person a name, and so when representing these types of statements in RDF,
we use a blank node.

RDF statements can be serialized in many different ways. Some of the most
popular formats today are RDF/XML, the Terse RDF Triple Language (Turtle),
and N-Triples. RDF/XML is an XML serialization, and it is the only normative
format for RDF exchange. Turtle is compact and human friendly and is the
preferred format used in this book. N-Triples is a line-based format that is easy
to generate and easy to parse when streaming serialization is necessary, so it
is often used in real-world Semantic Web software systems.

The RDF vocabulary is defined within the namespace http://www.w3.org/

1999/02/22-rdf-syntax-ns#. For each RDF term, we present a description
as well as a snippet of how it is serialized in RDF/XML and Turtle. For the
examples in this appendix, the following declarations apply:

RDF/XML:

<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#“

xmlns:ex=“http://example.org/ont#“

xml:base=“http://example.org/base#“>

Turtle:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix ex: <http://example.org/ont#> .

@prefix : <http://example.org/base#> .

Reification

Reification describes the process of making assertions about statements. The
statement is represented by a resource of type rdf:Statement. The rdf:

subject, rdf:predicate, and rdf:object predicates are used to identify the
statement. For example:

‘‘Witness Wally claims that Perpetrator Pete robbed the bank.’’

<rdf:Description rdf:about=“#WitnessWally“>

<ex:claims>
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<rdf:Statement>

<rdf:subject rdf:resource=“#PerpetratorPete“ />

<rdf:predicate rdf:resource=“http://example.org/ont#robbed“ />

<rdf:object rdf:resource=“http://example.org/ont#bank“ />

</rdf:Statement>

</ex:claims>

</rdf:Description>

:WitnessWally ex:claims [ a rdf:Statement ;

rdf:subject :PerpetratorPete ;

rdf:predicate ex:robbed ;

rdf:object ex:bank

] .

Containers

RDF containers and collections can be used to describe sets of resources. The
basic types of containers are rdf:Bag, rdf:Seq, and rdf:Alt, and the basic
type of RDF collection is rdf:List. The distinction between containers and
collections is with openness. RDF containers are said to be open because there is
no way to restrict the addition of extra resources to the sets they describe. The
rdf:List construct, in contrast, is considered to be closed. Once defined, it is
not possible to increase the set membership of an rdf:List.

The different types of containers have different meanings. The rdf:Bag,
for example, groups resources together in an unordered fashion, while the
rdf:Seq and rdf:List define ordered sequences of resources. The rdf:Alt

is used to define a set of resources that can be considered equivalent for a
particular circumstance. Consider the following sentence:

‘‘The meal was cooked by two groups of individuals: James and Susan, and Brenda
and William.’’

This sentence describes two sets of resources, but the order of the elements
within those sets is not important. This is an excellent candidate for an rdf:Bag:

<ex:Meal>

<ex:cookedBy>

<rdf:Bag>

<rdf:li rdf:resource=“#James“ />

<rdf:li rdf:resource=“#Susan“ />

</rdf:Bag>

</ex:cookedBy>

<ex:cookedBy>

<rdf:Bag>

<rdf:li rdf:resource=“#Brenda“ />

<rdf:li rdf:resource=“#William“ />

</rdf:Bag>
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</ex:cookedBy>

</ex:Meal>

[ a ex:Meal ;

ex:cookedBy [ a rdf:Bag ;

rdf: 1 :James ;

rdf: 2 :Susan

] ,

[ a rdf:Bag ;

rdf: 1 :Brenda ;

rdf: 2 :William

]

] .

The following sentence describes a set of alternate, equivalent resources:

‘‘To download the software, use either dl1.example.com or dl2.example

.com.’’

This is represented with an rdf:Alt:

<ex:Software>

<ex:available>

<rdf:Alt>

<rdf:li rdf:resource=“http://dl1.example.com“ />

<rdf:li rdf:resource=“http://dl2.example.com“ />

</rdf:Alt>

</ex:available>

</ex:Software>

[ a ex:Software ;

ex:available [ a rdf:Alt ;

rdf: 1 <http://dl1.example.com> ;

rdf: 2 <http://dl2.example.com>

]

] .

The following sentence can be represented with an rdf:Seq:

‘‘This morning I woke up, brushed my teeth, and then had breakfast.’’

Significantly, we presume that other things happened during the day. While
this sentence describes only up through breakfast, nothing can restrict extra
assertions about things that happened that morning:

<ex:Person>

<ex:activity>

<rdf:Seq>

<rdf:li rdf:resource=“#WakeupActivity“ />

<rdf:li rdf:resource=“#BrushTeethActivity“ />



Appendix A ■ RDF 523

<rdf:li rdf:resource=“#EatBreakfastActivity“ />

</rdf:Seq>

</ex:activity>

</ex:Person>

[ a ex:Person ;

ex:activity [ a rdf:Seq ;

rdf: 1 :WakeupActivity ;

rdf: 2 :BrushTeethActivity ;

rdf: 3 :EatBreakfastActivity

]

] .

When a collection of resources should be closed, use an rdf:List:

‘‘The United States presidents from the Democratic-Republican party were
Thomas Jefferson, James Madison, James Monroe, and John Quincy Adams.’’

Note how much more concise the Turtle representation is as compared to
the RDF/XML serialization:

<ex:DemocraticRepublicanParty>

<ex:elected>

<rdf:List>

<rdf:first rdf:resource=“#ThomasJefferson“ />

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource=“#JamesMadison“ />

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource=“#JamesMonroe“ />

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource=“#JohnQuincyAdams“ />

<rdf:rest>

<rdf:nil />

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</ex:elected>

</ex:DemocraticRepublicanParty>

[ a ex:DemocraticRepublicanParty ;

ex:elected (:John :Matt :Ryan :Andrew)

] .
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The OWL Web Ontology

Language

This appendix describes the OWL Web Ontology Language, the language
used to build ontologies that describe information on the Semantic Web.
OWL and its associated semantics are covered in depth in Chapter 4, ‘‘Incor-
porating Semantics.’’ Appendix A, ‘‘RDF,’’ presents the Resource Description
Framework, its terse vocabulary of terms, and numerous illustrative examples.
Because Chapter 4 already contains a lot of examples, this appendix focuses
instead on providing a reference for the OWL vocabulary. The appendix is
divided into major sections, each dealing with a different aspect of OWL. Each
section contains a list of the OWL vocabulary terms and descriptions relevant
to the topic of the section.

OWL extends RDF and RDF Schema (RDFS) to provide a vocabulary
of properties and classes that have associated semantics. These classes and
properties are used to build expressive ontologies that are in turn used to
describe resources. Table B-1 contains the namespaces used by the OWL
specification.

OWL requires adherence to two important assumptions:

Open world assumption—The open world assumption states
that the truth of a statement is independent of whether it
is known. In other words, not knowing that a statement is
explicitly true does not imply that the statement is false.
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No unique names assumption—The no unique names assumption
states that unless explicitly stated otherwise, you cannot assume
that resources that are identified by different URIs are different.

Table B-1 Namespaces Used In the OWL Web Ontology Language

NAMESPACE PREFIX

http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf

http://www.w3.org/2000/01/rdf-schema# rdfs

http://www.w3.org/2001/XMLSchema# xsd

http://www.w3.org/2002/07/owl# owl

These prefixes will be used in all examples without necessarily being defined explicitly.

OWL ontologies contain a header that is essentially the declaration of the
ontology itself. After that, the ontology contains a series of class and property
definitions, descriptions of individuals, and data range descriptions. A class
is a collection of individuals. A property is a relationship, and it can be either
between two individuals or between an individual and a literal value. An
individual is an instance (also known as a member) of a class.

Annotation Properties

Annotation properties can be used to describe any axiom or resource in the
ontology, including classes, properties, individuals, ontologies, and datatypes.
The following is a list of the annotation properties that are provided in OWL
as well as the class of annotation properties that can be used to describe new
annotation properties.

owl:AnnotationProperty The class of all annotation properties.

rdfs:label Annotation property that provides a label that represents the
resource. Often used by tools as a user interface substitute for a URI.

rdfs:comments Annotation property that provides a text description of
the resource.

rdfs:seeAlso Annotation property that specifies a resource that provides
additional information.

rdfs:isDefinedBy Annotation property that specifies a resource that
defines the subject resource.

owl:deprecated Annotation property that specifies whether or not the
subject URI is deprecated.

owl:DeprecatedClass The class of all deprecated classes.
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owl:DeprecatedProperty The class of all deprecated properties.

owl:priorVersion Annotation property that specifies a prior
version of the ontology that is the subject of the statement.

owl:backwardCompatibleWith Annotation property that specifies the
URI of an ontology that is compatible with the ontology that is the sub-
ject of the statement.

owl:incompatibleWith Annotation property that specifies the URI of an
ontology that is not compatible with the ontology that is the subject of
the statement.

Individuals

Individuals in OWL are members of classes. The following OWL vocabulary
terms are used to describe individuals:

rdf:type A relationship that specifies the class of which an individual is a
member.

owl:sameAs A relationship that specifies that two individuals are the
same individual.

owl:differentFrom A relationship that specifies that two individuals are
not the same individual.

owl:AllDifferent A class used with owl:distinctMembers to
define a collection of individuals who are pair-wise different.

Classes

An OWL class definition consists of some optional annotations followed
by zero or more constructs that restrict the membership of the class. These
restrictions represent descriptions of the class and form the basis of the
class definition. The various forms of class restriction include subclass
relationships, explicit membership enumeration, property restrictions, and
class-based set operations. The following OWL vocabulary terms can be used
to describe a class:

rdfs:subClassOf Relationship between two classes that states that
one class is more specific than the other. If a class A is a subclass
of a class B, any member of class A is also a member of class B. In
addition, rdfs:subClassOf is transitive. If class A is a subclass of
class B and B is a subclass of class C, then A is also a subclass of C.

owl:equivalentClass Relationship that specifies that the extensions of
two classes are equivalent.
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owl:Thing The class of all individuals.

owl:Nothing The class that contains no individuals.

owl:oneOf The membership of the class is limited to those members of
the specified collection of individuals.

owl:intersectionOf The members of this class are members of all of the
specified classes.

owl:unionOf The members of this class are members of at least one of the
specified classes.

owl:complementOf The members of this class are not members of the
specified class.

owl:disjointWith Relationship that specifies that the memberships of two
classes share no individuals.

owl:AllDisjointClasses A class used with owl:members to specify a set of
classes that are pair-wise disjoint.

owl:disjointUnionOf A relationship that specifies that this class is the
union of the set of specified classes and that those classes are pair-wise
disjoint.

Properties

OWL properties are used to establish relationships between resources. The
following OWL vocabulary terms are used to define properties:

owl:ObjectProperty The class of all properties that link two individuals.

owl:DatatypeProperty The class of all properties that link an individual
with a literal value.

owl:topObjectProperty Property that connects all possible pairs of indi-
viduals.

owl:bottomObjectProperty Property that connects no pairs of individu-
als.

owl:topDataProperty Property that connects all possible individuals with
all possible literals.

owl:bottomDataProperty Property that does not connect any individual
with a literal.

rdfs:domain Specifies the domain of a statement that is using
the property that is the subject of this domain statement.

rdfs:range Specifies the range of a statement that is using the
property that is the subject of this range statement.
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rdfs:subPropertyOf Relationship between two properties that
specifies that one property is more specific than the other. If a
property p1 is a subproperty of a property p2, the existence of a
statement (A p1 B) implies the existence of the statement (A p2 B).

owl:equivalentProperty Relationship that specifies that two properties
are equivalent.

owl:inverseOf Relationship that specifies that two prop-
erties are the inverse of each other. If a property p1 is the
inverse of a property p2, the existence of a statement (A
p1 B) implies the existence of the statement (B p2 A).

owl:propertyChain Relationship that is used to build a chain of proper-
ties that represent the super property in a subproperty-of relationship.

owl:SymmetricProperty The class of all properties that are
symmetric. For all symmetric properties p, the statement
(A p B) implies the existence of the statement (B p A).

owl:AsymmetricProperty The class of all properties that are explic-
itly not symmetric. For all asymmetric properties p, the statement
(A p B) implies the nonexistence of the statement (B p A).

owl:ReflexiveProperty The class of all properties that are reflexive. For all
reflexive properties p and individuals A, A is related to itself by p - (A p
A).

owl:IrreflexiveProperty The class of all properties that are not reflexive.
For all irreflexive properties p and individuals A, there is no statement
(A p A).

owl:TransitiveProperty The class of all properties that are transitive.
For all transitive properties p, (A p B) and (B p C) implies (A p C).

owl:FunctionalProperty The class of all properties for which
a given domain value has only a single range value.

owl:InverseFunctionalProperty The class of all properties for which
a given object of a statement has only a single subject value.

owl:propertyDisjointWith Relationship that establishes that two
properties are disjoint. If two properties p1 and p2 are disjoint, it
implies that no two statements with the same subject and object
can have the predicates p1 and p2 - (A p1 B) and (A p2 B).

owl:AllDisjointProperties A class that is used with owl:members

to describe collections of properties that are pair-wise disjoint.

In addition to conventional, positive property assertions, OWL provides the
notion of negative property assertions. Negative property assertions specify
that a particular relationship does not exist between two individuals or



530 Appendix B ■ The OWL Web Ontology Language

between an individual and a literal value. The following vocabulary terms are
used to specify negative property assertions:

owl:NegativePropertyAssertion The class of all negative property asser-
tions.

owl:sourceIndividual The individual that is the subject of the negative
property assertion.

owl:assertionProperty The property that is the predicate of the negative
property assertion.

owl:targetIndividual The individual that is the object of the negative
property assertion.

owl:targetValue The literal value that is the object of the negative prop-
erty assertion.

Datatypes

Datatypes represent ranges of data values that are identified using URIs. OWL
allows you to use a number of predefined datatypes, of which most are defined
in the XML Schema Definition (xsd) namespace. In addition to the predefined
datatypes, OWL 2 introduces the ability to define your own datatypes. There
are two ways to do so: you can create a custom data range using facets
(Table B-2), or you can define a datatype in terms of other datatypes.

Table B-2 Facets supported by OWL

FACET DESCRIPTION

xsd:length N is the exact number of items (or characters) allowed.

xsd:minLength N is the minimum number of items (or characters) allowed.

xsd:maxLength N is the maximum number items (or characters) allowed.

xsd:Pattern A regular expression that defines allowed character strings.

xsd:minInclusive Values must be greater than or equal to N.

xsd:minExclusive Values must be strictly greater than N.

xsd:maxInclusive Values must be less than or equal to N.

xsd:maxExclusive Values must be strictly less than N.

xsd:totalDigits The number of digits must be equal to N.

xsd:fractionDigits N is the maximum number of decimal places allowed.

N refers to the value portion of the facet restriction.
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This is the full set of vocabulary terms that can be used to define custom
datatypes:

rdfs:Datatype The class of all datatypes.

owl:onDatatype Property that identifies the datatype to which the facet
restrictions apply.

owl:withRestrictions Property that identifies a collection of facet restric-
tions that describe the datatype.

owl:intersectionOf Property that identifies a set of datatypes such that
the datatype being described contains the values that are contained in all
datatypes in the set.

owl:unionOf Property that identifies a set of datatypes such
that the datatype being described contains any value that
is contained in at least one of the datatypes in the set.

owl:datatypeComplementOf Property that specifies that the datatype
being described contains all values that are not in the datatype that the
property identifies.

owl:oneOf Property that identifies a set of values that make up the
datatype.

The following example demonstrates how to define an example datatype
using facets. The first datatype represents all integers that have nine digits.
Note that all custom datatypes must be anonymous resources.

@prefix ex: <http://example.org/>.

...

#integers with 9 digits

[] rdf:type rdfs:Datatype;

owl:onDatatype xsd:integer;

owl:withRestrictions (

[

xsd:totalDigits 9;

]

).

Property Restrictions

A property restriction describes the class of individuals that meet the specified
property-based conditions. The restriction is declared using the construct
owl:Restriction, and the property to which the restriction refers is identified
using the property owl:onProperty. Restrictions are related to classes using
either rdfs:subClassOf or owl:equivalentClass. They can also appear as the
objects of statements that combine classes using set operators.
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Similar to restrictions, OWL also provides a concept called keys. A key
describes a set of properties whose collective values can be associated with
only a single subject.

The following list of vocabulary terms can be used to build restrictions and
keys:

owl:Restriction The class of all restrictions.

owl:SelfRestriction The class of all self-restrictions. Self-restrictions
identify classes of individuals who are related to themselves by a
property.

owl:onProperty Property that identifies the property to which a
restriction applies.

owl:allValuesFrom Property that specifies that all instances in this
class must have values only from the specified range for the specified
property.

owl:someValuesFrom Property that specifies that all instances of this
class must have at least one property with a value from the specified
range.

owl:hasValue Property that specifies that all instances of this
class must have the specified value for the specified property.

owl:minCardinality Property that specifies there must be at least
N of the specified properties on each instance of this class.

owl:maxCardinality Property that specifies there must be at most
N of the specified properties on each instance of this class.

owl:cardinality Property that specifies there must be exactly N
of the specified properties on each instance of this class.

owl:onClass Property that identifies the class of which the
subject of a qualified cardinality restriction is a member.

owl:minQualifiedCardinality Property that specifies there must be at
least N properties that each point to an instance of the specified class.

owl:maxQualifiedCardinality Property that specifies there must be at
most N properties that each point to an instance of the specified class.

owl:qualifiedCardinality Property that specifies there are exactly
N properties that each point to an instance of the specified class.

owl:hasKey Property used to identify a collection of properties that con-
stitute a key for a given class.
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SWRL

SWRL is an acronym for the Semantic Web Rule Language. This appendix
presents several examples of SWRL and covers the namespaces, built-ins,
and keywords in alphabetical order, which are part of the SWRL submission.
In the case of keywords, a short description is given. A page number is
listed if a keyword or example is described in finer detail in the book, and
a reference URL is provided to obtain additional information from the W3C
Submission.

SWRL Examples

Figure C-1 shows an example of deconstructed SWRL code in RDF concrete
syntax. It is followed by another example in RDF concrete syntax as well as in
Turtle.

533
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"if"
Clause or

antecedent

"then"
Clause or

consequent

Same Rule in Human
Readable Syntax

Figure C-1 A deconstructed SWRL sample in RDF concrete syntax

RDF concrete syntax:
<swrl:Imp rdf:about="http://www.semwebprogramming.com/dislikeRose

GrowingNeighborsRule">

<swrl:body>

<swrl:AtomList>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource="&swrl;ClassAtom"/>

<swrl:argument1>

<rdf:Description rdf:about="#n"/>

</swrl:argument1>

<swrl:classPredicate

rdf:resource="#Neighbor"/>

</rdf:Description>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>
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<rdf:Description>

<rdf:type

rdf:resource="&swrl;ClassAtom"/>

<swrl:argument1>

<rdf:Description rdf:about="#r"/>

</swrl:argument1>

<swrl:classPredicate

rdf:resource="#Rose"/>

</rdf:Description>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<rdf:Description>

<rdf:type rdf:resource=

"&swrl;IndividualPropertyAtom"/>

<swrl:argument2>

<rdf:Description rdf:about="#r"/>

</swrl:argument2>

<swrl:argument1>

<rdf:Description rdf:about="#n"/>

</swrl:argument1>

<swrl:propertyPredicate

rdf:resource="#plants"/>

</rdf:Description>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</swrl:body>

<swrl:head>

<swrl:AtomList>

<rdf:first>

<rdf:Description>

<rdf:type

rdf:resource="&swrl;IndividualPropertyAtom"/>

<swrl:argument2>

<rdf:Description rdf:about="#n"/>

</swrl:argument2>

<swrl:argument1 rdf:resource="#me"/>

<swrl:propertyPredicate

rdf:resource="#dislike"/>

</rdf:Description>

</rdf:first>

<rdf:rest rdf:resource="&rdf;nil"/>

</swrl:AtomList>
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</swrl:head>

</swrl:Imp>

Turtle:
:dislikeRoseGrowingNeighborsRule

rdf:type swrl:Imp ;

swrl:body

[ rdf:type swrl:AtomList ;

rdf:first

[ rdf:type swrl:ClassAtom ;

swrl:argument1 rose:n ;

swrl:classPredicate rose:Neighbor

] ;

rdf:rest

[ rdf:type swrl:AtomList ;

rdf:first

[ rdf:type swrl:ClassAtom ;

swrl:argument1 rose:r ;

swrl:classPredicate rose:Rose

] ;

rdf:rest

[ rdf:type swrl:AtomList ;

rdf:first

[ rdf:type swrl:IndividualPropertyAtom ;

swrl:argument1 rose:n ;

swrl:argument2 rose:r ;

swrl:propertyPredicate rose:plants

] ;

rdf:rest ()

]

]

] ;

swrl:head

[ rdf:type swrl:AtomList ;

rdf:first

[ rdf:type swrl:IndividualPropertyAtom ;

swrl:argument1 rose:me ;

swrl:argument2 rose:n ;

swrl:propertyPredicate rose:dislike

] ;

rdf:rest ()

] .

Namespaces

Table C-1 lists some of the namespaces that are typically used in files with
SWRL statements.
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Table C-1 Common SWRL Namespaces

PREFIX URL

owlx http://www.w3.org/2003/05/owl-xml

ruleml http://www.w3.org/2003/11/ruleml

swrlb http://www.w3.org/2003/11/swrlb

swrlx http://www.w3.org/2003/11/swrlx

Built-ins

This section contains a list of all the built-ins with a short description
of each as documented in the W3C SWRL Submission (http://www.w3
.org/Submission/SWRL/#8).

Comparisons, Booleans
This section covers built-ins that are used for argument comparisons and
boolean verification. Examples are provided in human-readable syntax.

booleanNot(?first, ?second)

Satisfied if and only if the first argument is true and the second
argument is false, or vice versa.

booleanNot(?isFiveGreaterThanSix, true) will return true.

equal(?first, ?second)

Satisfied if and only if the first argument and the second argument
are the same.

equal(6.1, ?height) will return true if height is set to 6.1.

greaterThan(?first, ?second)

Satisfied if and only if the first argument and the second argument
are both in some implemented type and the first argument is
greater than the second argument according to a type-specific
ordering (partial or total), if there is one defined for the type.

greaterThan(1, 2) will return false.

greaterThanOrEqual(?first, ?second)

Satisfied if and only if the first argument and the second argument
are both in some implemented type and the first argument is greater
than or equal to the second argument according to a type-specific
ordering (partial or total), if there is one defined for the type.
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greaterThanOrEqual(1, 2) will return false.

lessThan(?first, ?second)

Satisfied if and only if the first argument and the second argument
are both in some implemented type and the first argument
is less than the second argument according to a type-specific
ordering (partial or total), if there is one defined for the type.

lessThan(1, 2) will return true.

lessThanOrEqual(?first, ?second)

Satisfied if and only if the first argument and the second argument
are both in some implemented type and the first argument is less
than or equal to the second argument according to a type-specific
ordering (partial or total), if there is one defined for the type.

lessThanOrEqual(1, 2) will return true.

notEqual(?first, ?second)

Satisfied if and only if the first argument and the second argument
are not the same.

notEqual(1, 2) will return true.

Mathematics
This section covers mathematical operations for built-in arguments.

abs(?first, ?second)

Satisfied if and only if the first argument is the absolute value of the
second argument.

abs(1, ?value) will return true if ?value is set to 1 or −1.

add(?sum, ?second, ?third)

Satisfied if and only if the first argument (?sum) is equal to
the arithmetic sum of the second and third arguments.

add(?total, 85, 4) will set the value of ?total to 89.

ceiling(?first, ?second)

Satisfied if and only if the first argument is the smallest number with
no fractional part that is greater than or equal to the second argu-
ment.

ceiling(?c, 5.34) will set the value of ?c to 6.

cos(?first, ?second)

Satisfied if and only if the first argument is equal to the
cosine of the radian value of the second argument.

cos(?c, 3.14) will set the value of ?c to approximately
−0.99999873172754.
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divide(?quotient, ?second, ?third)

Satisfied if and only if the first argument (the quotient) is equal to
the arithmetic quotient of the second argument divided by the third
argument.

divide(?q, 15, 3) will set the value of ?q to 5.

floor(?first, ?second)

Satisfied if and only if the first argument is the largest number with
no fractional part that is less than or equal to the second argument.

floor(?c, 5.34) will set the value of ?c to 5.

integerDivide(?quotient, ?second, ?third)

Satisfied if the first argument is the arithmetic quotient of the
second argument divided by the third argument. If the numer-
ator is not evenly divided by the divisor, then the quotient is
the xsd:integer value obtained, ignoring any remainder that
results from the division (that is, no rounding is performed).

integerDivide(?q, 16, 3) will set the value of ?q to 5.

mod(?remainder, ?dividend, ?divisor)

Satisfied if and only if the first argument represents the
remainder resulting from dividing the second argument
(the dividend) by the third argument (the divisor).

mod(?r, 16, 3) will set the value of ?r to 1.

multiply(?product, ?second, ?third)

Satisfied if and only if the first argument is equal to the
arithmetic product of the second and third arguments.

multiply(?p, 75.3, 20) will set the value of ?p to 1506.

pow(?first, ?second, ?power)

Satisfied if and only if the first argument is equal to the result
of the second argument raised to the third argument power.

pow(?f, 2, 3) will set the value of ?f to 8.

round(?first, ?second)

Satisfied if and only if the first argument is equal to the nearest
number to the second argument with no fractional part.

round(?r, 22.3) will set the value of ?r to 22.

roundHalfToEven(?first, ?second, ?precision)

Satisfied if and only if the first argument is equal to the second argu-
ment rounded to the given precision. If the fractional part is exactly
half, the result is the number whose least significant digit is even.
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roundHalfToEven(?r, 22.34582, 4) will set the value of ?r to
22.3458.

sin(?first, ?second)

Satisfied if and only if the first argument is equal to the
sine of the radian value of the second argument.

sin(?s, 3.14) will set the value of ?s to approximately
.001592652916487.

subtract(?total, ?second, ?third)

Satisfied if and only if the first argument is equal to the arithmetic
difference of the second argument minus the third argument.

subtract(?t, 10, 4.2) will set the value of ?t to 5.8.

unaryMinus(?first, ?second)

Satisfied if and only if the first argument is equal to the second argu-
ment with its sign reversed.

unaryMinus(?u, 10) will set the value of ?u to −10.

unaryPlus(?first, ?second)

Satisfied if and only if the first argument is equal to
the second argument with its sign unchanged.

unaryPlus(?u, 10) will set the value of ?u to 10.

Strings
This section covers string operations for built-in arguments.

contains(?first, ?second)

Satisfied if and only if the first argument contains the second argu-
ment (case sensitive).

contains("SWRL", "wrl") returns false.

containsIgnoreCase(?first, ?second)

Satisfied if and only if the first argument contains the second argu-
ment (case insensitive).

containsIgnoreCase("SWRL", "wrl") returns true.

endsWith(?first, ?second)

Satisfied if and only if the first argument ends with the second argu-
ment.

endsWith("SWRL", "RL") returns true.

lowercase(?first, ?second)

Satisfied if and only if the first argument is equal to the lowercase
value of the second argument.

lowercase(?l, "SWRL") will set the value of ?l to ‘‘swrl’’.
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matches(?first, ?regex)

Satisfied if and only if the first argument matches the XML
Schema-based regular expression presented in the second argu-
ment.
matches("SWRL", "SW*") returns true.

normalizeSpace(?first, ?second)

Satisfied if and only if the first argument is equal to the
white space–normalized value of the second argument.

normalizeSpace(?w, " Semantic Web ") will set the value of ?w to
‘‘Semantic Web’’.

replace(?first, ?second, ?regex, ?replacement)

Satisfied if and only if the first argument is equal to the
value of the second argument, with every substring matched
by the regular expression (the third argument) replaced
by the replacement string (the fourth argument).

replace(?r, "Semantic Web Programming", "e? ", "xx") will
set the value of ?r to ‘‘Sxxmantic Wxxb Programming’’.

startsWith(?first, ?second)

Satisfied if and only if the first argument starts with the second
argument.

startsWith("SWRL", "SW") returns true.

stringConcat(?concatenation, ?second, ?third)

Satisfied if and only if the first argument is equal to the string result-
ing from the concatenation of the strings of the second and third
arguments.

stringConcat(?c, "Semantic ", "Web") will set the value of ?c to
‘‘Semantic Web’’.

stringEqualIgnoreCase(?first, ?second)

Satisfied if and only if the first argument is the same as the second
argument (case insensitive).

stringEqualIgnoreCase("SWRL", "sWrL") returns true.
stringLength(?first, ?second)

Satisfied if and only if the first argument is equal to the length of the
second argument.

stringLength("ten", "two") returns true.
substring(?first, ?second?, ?startingOffset, ?endingOffset)

Satisfied if and only if the first argument is equal to the
substring based on the second argument, as restricted by
the integers used in the third and fourth arguments.
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substring(?s, "Semantic Web", 2, 5) will set the value of ?s to
‘‘emantic’’.

substringAfter(?first, ?second, ?third)

Satisfied if and only if the first argument is the characters of the sec-
ond argument that follow the characters of the third argument.

substringAfter(?f, "Semantic Web", "Sem") will set the value of
?f to ‘‘antic Web’’.

substringBefore(?first, ?second, ?third)

Satisfied if and only if the first argument contains the characters of
the second argument that precede the characters of the third argu-
ment.

substringBefore(?f, "Semantic Web", "tic Web") will set the
value of ?f to ‘‘Seman’’.

tokenize(?first, ?second, ?regex)

Satisfied if and only if the first argument is a sequence
of one or more strings whose values are substrings
of the second argument separated by substrings that
match the regular expression in the third argument.

tokenize(?t, "The Semantic Web", "\s+") will set ?t to ‘‘The’’,
‘‘Semantic’’ and ‘‘Web’’.

translate(?first, ?second, ?third, ?position)

Satisfied if and only if the first argument is equal to the sec-
ond argument with occurrences of characters contained in
the third argument replaced by the character at the corre-
sponding position in the string of the fourth argument.

translate(?t, "The Semantic Web", "aei", "AqI")

will set the value of ?t to ‘‘Thq SqmAntIc Wqb’’.

uppercase(?first, ?second)

Satisfied if and only if the first argument is equal to the uppercase
value of the second argument.

uppercase(?u, "SwRl") will set the value of ?u to ‘‘SWRL’’.

Date, Time, Duration
This section covers date and time operations for built-in arguments.

addDayTimeDurations(?sum, ?second, ?third)

Satisfied if and only if the dayTimeDuration expressed in
the first argument is equal to the arithmetic sum of the
dayTimeDuration expressed in the second argument and
the dayTimeDuration expressed in the last argument.
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addDayTimeDurations(?s, "P1Y6DT10H", "P3DT10H15M") will
set the value of ?s to ‘‘P1Y9DT20H15M’’ˆˆxsd:duration.

addDayTimeDurationToDate(?sum, ?second, ?third)

Satisfied if and only if the xsd:date of the first argument is equal to
the arithmetic sum of the xsd:date expressed in the second argu-
ment plus the dayTimeDuration expressed in the third argument.

addDayTimeDurationToDate(?s, "2008-12-01", "P1Y9D")

will set the value of ?s to ‘‘2009-12-10’’ˆˆxsd:date.

addDayTimeDurationToDateTime(?sum, ?second, ?third)

Satisfied if and only if the xsd:dateTime of the first argument is
equal to the arithmetic sum of the xsd:dateTime expressed in the
second argument plus the dayTimeDuration expressed in the third
argument.

addDayTimeDurationToDateTime(?s, "2008-12-01T06:30:00Z",

"P1Y9DT15M") will set the value of ?s to ‘‘2009-12-10T06:45:00Z’’ˆˆ
xsd:dateTime.

addDayTimeDurationToTime(?sum, ?second, ?third)

Satisfied if and only if the xsd:time of the first argument is equal to
the arithmetic sum of the xsd:time expressed in the second argu-
ment plus the dayTimeDuration expressed in the third argument.

addDayTimeDurationToTime(?s, "06:30:00Z", "PT15M")

will set the value of ?s to ‘‘06:45:00Z’’ˆˆxsd:time.

addYearMonthDurations(?sum, ?second, ?third)

Satisfied if and only if the yearMonthDuration of the first argument
is equal to the arithmetic sum of the yearMonthDuration of the sec-
ond argument and the yearMonthDuration of the third argument.

addYearMonthDurations(?s, "P5Y10M", "P1Y1M") will
set the value of ?s to ‘‘P6Y11M’’ˆˆxsd:duration.

addYearMonthDurationToDate(?sum, ?second, ?third)

Satisfied if and only if the xsd:date of the first argument is equal to
the arithmetic sum of the xsd:date expressed in the second argu-
ment plus the yearMonthDuration expressed in the third argument.

addYearMonthDurationToDate(?s, "2008-12-01", "P5Y11M")

will set the value of ?s to ‘‘2014-11-01’’ˆˆxsd:date.

addYearMonthDurationToDateTime(?sum, ?second, ?third)

Satisfied if and only if the xsd:dateTime of the first argument is
equal to the arithmetic sum of the xsd:dateTime expressed in the
second argument plus the yearMonthDuration expressed in the
third argument.
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addYearMonthDurationToDateTime(?s, "2008-12-01T06:30:00Z",

"P5Y11M") will set the value of ?s to ‘‘2014-11-01T06:30:00Z’’ˆˆ
xsd:dateTime.

date(?fullDate, ?year, ?month, ?day, ?timezone)

Satisfied if and only if the first argument is the xsd:date

representation consisting of the year in the second argu-
ment, the month in the third argument, the day in the fourth
argument, and the timezone in the fifth argument.

date(?fd, 2008, 1, 1, 0) will set the value of ?fd to ‘‘2008-01-01’’ˆˆ
xsd:date.

dateTime(?fullDateTime, ?year, ?month, ?day, ?hours, ?minutes,

?seconds, ?timezone)

Satisfied if and only if the first argument is the xsd:dateTime

representation consisting of the year in the second argument, the
month in the third argument, the day in the fourth argument, the
hours in the fifth argument, the minutes in the sixth argument,
the seconds in the seventh argument, and the timezone in the eighth
argument.

dateTime(?fdt, 2008, 1, 1, 6, 45, 12, 0) will set the value
of ?fdt to ‘‘2008-01-01T06:45:12Z’’ˆˆxsd:dateTime.

dayTimeDuration(?fullDayTime, ?days, ?hours, ?minutes,

?seconds)

Satisfied if and only if the first argument is the xsd:duration

representation consisting of the days in the second argu-
ment, the hours in the third argument, the minutes in the
fourth argument, and the seconds in the fifth argument.

dayTimeDuration(?fdt, 30, 66, 2, 51) will set the
value of ?fdt to ‘‘P30DT66H2M51S’’ˆˆxsd:duration.

divideDayTimeDuration(?quotient, ?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument
is equal to the arithmetic remainder of the dayTimeDuration

of the second argument divided by the third argument.

divideDayTimeDuration(?q, "P2D15H32M17S", 2) will set
the value of ?q to ‘‘P1D7H46M8.5S’’ˆˆxsd:duration.

divideYearMonthDurations(?quotient, ?second, ?third)

Satisfied if and only if the yearMonthDuration of the first argument
is equal to the arithmetic remainder of the yearMonthDuration

of the second argument divided by the third argument.

divideYearMonthDurations(?q, "P12Y6M", 1.5) will
set the value of ?q to ‘‘P8Y4M’’ˆˆxsd:duration.
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multiplyDayTimeDurations(?product, ?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument
is equal to the arithmetic product of the dayTimeDuration of
the second argument multiplied by the third argument.

multiplyDayTimeDurations(?p, "P2D15H32M17S", 2) will
set the value of ?p to ‘‘P5D7H4M34S’’ˆˆxsd:duration.

multiplyYearMonthDuration(?product, ?second, ?third)

Satisfied if and only if the yearMonthDuration of the first argu-
ment is equal to the arithmetic product of the yearMonthDuration

of the second argument multiplied by the third argument.

multiplyYearMonthDuration(?p, "P12Y6M", 1.5) will
set the value of ?p to ‘‘P18Y9M’’ˆˆxsd:duration.

subtractDates(?difference, ?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument
is equal to the arithmetic difference of the xsd:date of the
second argument minus the xsd:date of the third argument.

subtractDates(?d, "2008-12-05", "2008-11-03") will
set the value of ?d to ‘‘P1M2D’’ˆˆxsd:duration.

subtractDateTimesYieldingDayTimeDuration(?difference,

?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument
is equal to the arithmetic difference of the xsd:dateTime of the sec-
ond argument minus the xsd:dateTime of the third argument.

subtractDateTimesYieldingDayTimeDuration(?d, "2008-12-

02T08:30:00Z", "2008-12-01T06:30:00Z") will set the value of ?d
to ‘‘P1D2H’’ˆˆxsd:duration.

subtractDateTimesYieldingYearMonthDuration(?difference,

?second, ?third)

Satisfied if and only if the yearMonthDuration of the first
argument is equal to the arithmetic difference of the xsd:dateTime

of the second argument minus the xsd:dateTime of the third argu-
ment.

subtractDateTimesYieldingYearMonthDuration(?d,

"2008-12-01T08:

30:00Z", "2007-12-01T06:30:00Z") will set the value of ?d to
‘‘P1Y’’ˆˆxsd:duration.

subtractDayTimeDurationFromDate(?difference, ?second, ?third)

Satisfied if and only if the xsd:date of the first argument is
equal to the arithmetic difference of the xsd:date of the second
argument minus the dayTimeDuration of the third argument.



546 Appendix C ■ SWRL

subtractDayTimeDurationFromDate(?d, "2008-12-01",

"P3DT2H30M") will set the value of ?d to ‘‘11-27-2008’’ˆˆxsd:date.

subtractDayTimeDurationFromDateTime(?difference, ?second,

?third)

Satisfied if and only if the xsd:dateTime of the first argument is
equal to the arithmetic difference of the xsd:dateTime of the second
argument minus the dayTimeDuration of the third argument.

subtractDayTimeDurationFromDateTime(?d, "2008-12-01T11:

00:00", "P3DT2H30M") will set the value of ?d to ‘‘11-28-2008T08:30:
00’’ˆˆxsd:dateTime.

subtractDayTimeDurationFromTime(?difference, ?second, ?third)

Satisfied if and only if the xsd:time of the first argument is
equal to the arithmetic difference of the xsd:time of the second
argument minus the dayTimeDuration of the third argument.

subtractDayTimeDurationFromTime(?d, "06:30:00Z",

"PT2H30M") will set the value of ?d to ‘‘T04:00:00’’ˆˆxsd:time.

subtractDayTimeDurations(?difference, ?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument is
equal to the arithmetic difference of the dayTimeDuration of the sec-
ond argument minus the dayTimeDuration of the third argument.

subtractDayTimeDurations(?d, "P3DT12H30M54S", "P2DT6H-

14M05S") will set the value of ?d to ‘‘P1D6H16M49S’’ˆˆxsd:duration.

subtractTimes(?difference, ?second, ?third)

Satisfied if and only if the dayTimeDuration of the first argument
is equal to the arithmetic difference of the xsd:time of the
second argument minus the xsd:time of the third argument.

subtractTimes(?d, "T12:30:54Z", "T11:05:05Z") will
set the value of ?d to ‘‘P1H25M49S’’ˆˆxsd:duration.

subtractYearMonthDurationFromDate(?difference, ?second,

?third)

Satisfied if and only if the xsd:date of the first argument
is equal to the arithmetic difference of the xsd:date of the
second argument minus the yearMonthDuration of the third
argument.

subtractYearMonthDurationFromDate(?d, "2008-12-01",

"P1Y2M") will set the value of ?d to ‘‘2007-10-01’’ˆˆxsd:date.

subtractYearMonthDurationFromDateTime(?difference, ?second,

?third)

Satisfied if and only if the xsd:dateTime of the first argument
is equal to the arithmetic difference of the xsd:dateTime of
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the second argument minus the yearMonthDuration of the third
argument.

subtractYearMonthDurationFromDateTime(?d, "2008-12-01T11:

00:00", "P1Y2M") will set the value of ?d to ‘‘2007-10-01T11:
00:00’’ˆˆxsd:dateTime.

subtractYearMonthDurations(?difference, ?second, ?third)

Satisfied if and only if the yearMonthDuration of the
first argument is equal to the arithmetic difference of
the yearMonthDuration of the second argument minus
the yearMonthDuration of the third argument.

subtractYearMonthDurations(?d, "P5Y10M", "P3Y2M")

will set the value of ?d to ‘‘P2Y8M’’ˆˆxsd:duration.

time(?fullTime, ?hours, ?minutes, ?seconds, ?timezone)

Satisfied if and only if the first argument is the xsd:time

representation consisting of the hours of the second argu-
ment, the minutes of the third argument, the seconds of the
fourth argument, and the timezone of the fifth argument.

time(?ft, 12, 14, 30, 0) will set the value of ?ft to ‘‘T12:14:30Z’’ˆˆ
xsd:time.

yearMonthDuration(?fullDuration, ?year, ?month)

Satisfied if and only if the first argument is the xsd:duration

representation consisting of the year expressed in the
second argument and the month in the third argument.

yearMonthDuration(?d, 5, 11) will set the value of ?d to
‘‘P5Y11M’’ˆˆxsd:duration.

URIs
This section covers URI-related operations.

anyURI(?fullURI, ?scheme, ?host, ?port, ?path, ?query,

?fragment)

Satisfied if and only if the first argument is a URI refer-
ence consisting of the scheme in the second argument, the
host in the third argument, the port in the fourth argu-
ment, the path in the fifth argument, the query in the sixth
argument, and the fragment in the seventh argument.

anyURI(?f, "http", "192.168.1.100", "8080", "/path/name",

"?help", "=time") will set the value of ?f to http://192.168.1.

100:8080/path/name?help=time.
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resolveURI(?fullURI, ?referenceURI, ?baseURI)

Satisfied if and only if the URI reference of the first argument is
equal to the value of the URI reference of the second argument
resolved relative to the base URI of the third argument.

resolveURI(?u, "a/b", "http://www.semwebprogramming.com/

path#") will set the value of ?u to ‘‘http://www.semwebprogramming
.com/path#a/b’’.

Lists
This section covers list operations for built-in arguments.

empty(?list)

Satisfied if and only if the list in the first argument is an empty list.

empty("one" "two") returns false.

first(?firstMember, ?list)

Satisfied if and only if the first argument is the first member of the
list in the second argument.

first(?f, "one" "two") will set the value of ?f to ‘‘one’’.

length(?length, ?list)

Satisfied if and only if the first argument is the length of
the list in the second argument (the number of members of
the list).

length(?l, "one" "two") will set the value of ?l to 2.

listConcat(?concatenation, ?second, ?third)

Satisfied if and only if the first argument is a list representing the
concatenation of the lists of the second and third arguments.

listConcat(?c, "three" "four", "one" "two") will set
the value of ?c to ‘‘three’’ ‘‘four’’ ‘‘one’’ and ‘‘two’’.

listIntersection(?intersection, ?second, ?third)

Satisfied if and only if the first argument is a list containing
elements found in both the lists expressed in the second and third
arguments.

listIntersection(?i, "one" "two", "two" "three" "four") will
set the value of ?i to ‘‘two’’.

listSubtraction(?difference, ?second, ?third)

Satisfied if and only if the first argument is a list contain-
ing elements of the list in the second argument but that are
not members of the list expressed the third argument.
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listSubtraction(?d, "one" "two" "three", "one" "two") will set
the value of ?d to ‘‘three’’.

member(?member, ?list)

Satisfied if and only if the first argument is a member of the list in
the second argument.

member("one", "one" "two" "three") will return true.

rest(?notHead, ?list)

Satisfied if and only if the first argument is a list con-
taining all members of the list expressed in the sec-
ond argument except the first member (the head).

rest(?nH, "one" "two" "three") will set the value of ?nH to ‘‘two’’
‘‘three’’.

sublist(?fullList, ?subList)

Satisfied if and only if the list in the first argument contains the list
in the second argument.

sublist("one" "two" "three", "one" "five") returns false.

Keywords

This section covers SWRL keywords.

Atom

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), Atom is the common ancestor for all types of SWRL
atoms in the RDF concrete syntax. Formally defined at
http://www.w3.org/Submission/SWRL/swrl.rdf.

argument1

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), argument1 is used as the first argument in
various atom types (e.g., ClassAtom) and refers to an RDFS
resource in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

argument2

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), argument2 is used as the second argument in vari-
ous atom types (e.g., DatavaluedPropertyAtom) and refers to either
an RDFS resource or a literal in the RDF concrete syntax. Formally
defined at http://www.w3.org/Submission/SWRL/swrl.rdf.



550 Appendix C ■ SWRL

arguments

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), arguments is an RDF list of arguments for a
BuiltinAtom in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

body

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), body defines the antecedent (the if clause) of
a SWRL rule in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

body

As part of the RuleML namespace (http://www.w3.org/2003/
11/ruleml), body defines the antecedent (the if clause) of a SWRL
rule in the XML concrete syntax. Described on page 239 as well
as at http://www.w3.org/Submission/SWRL/#owls antecedent.

Builtin

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), Builtin defines the SWRL built-in as a class in the
RDF concrete syntax. Formally defined at http://www.w3.org/
Submission/SWRL/swrl.rdf.

builtin

As part of the SWRL XML namespace (http://www.w3.org/
2003/11/swrlx), builtin is an attribute of swrlx:builtinAtom
that specifies the URL of a particular built-in in the XML
concrete syntax. Described on page 243, with a list of built-ins
detailed at http://www.w3.org/Submission/SWRL/#8.

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), builtin associates a BuiltinAtom with a given
Builtin in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

BuiltinAtom

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), BuiltinAtom defines a SWRL built-in and
a list of arguments in the RDF concrete syntax. Formally
defined at http://www.w3.org/Submission/SWRL/swrl.rdf.

builtinAtom

As part of the SWRL XML namespace (http://www.w3.org/
2003/11/swrlx), builtinAtom declares the use of a SWRL built-in
in the XML concrete syntax. Described on page 243 as well as at
http://www.w3.org/Submission/SWRL/#owls builtinAtom.
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ClassAtom

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), ClassAtom defines an OWL class in the RDF concrete
syntax. Formally defined at http://www.w3.org/Submission/SWRL/
swrl.rdf.

classAtom

As part of the SWRL XML namespace (http://www.w3.org/
2003/11/swrlx), classAtom defines an OWL class in the
XML concrete syntax. Described on page 240 as well as at
http://www.w3.org/Submission/SWRL/#owls classAtom.

classPredicate

As part of the SWRL RDF namespace (http://www.w3
.org/2003/11/swrl), classPredicate relates a ClassAtom

to a class in the RDF concrete syntax. Formally defined at
http://www.w3.org/

Submission/SWRL/swrl.rdf.

dataRange

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), dataRange associates a DataRangeAtom with
an owl:DataRange in the RDF concrete syntax. Formally
defined at http://www.w3.org/Submission/SWRL/swrl.rdf.

DataRangeAtom

As part of the SWRL RDF namespace (http://www.w3
.org/2003/11/swrl), DataRangeAtom defines a datarange atom in
the RDF concrete syntax. It is used as the domain for the dataRange

property. Formally defined at http://www.w3.org/Submission/
SWRL/swrl.rdf.

datarangeAtom

As part of the SWRL XML namespace (http://www.w3.
org/2003/11/swrlx) datarangeAtom associates a variable
with a declared datatype or a range of literal values in the
XML concrete syntax. Described on page 241 as well as at
http://www.w3.org/Submission/SWRL/#owls datarangeAtom.

datatype

As part of the OWL XML namespace (http://www.w3.org/
2003/05/owl-xml), datatype is an attribute of owlx:DataValue
that specifies the XML datatype of the DataValue’s literal in the
XML concrete syntax. Detailed at http://www.w3.org/Submission/
SWRL/#8.
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DataValue

As part of the OWL XML namespace (http://www.w3.org/
2003/05/owl-xml), DataValue specifies a literal value in the
XML concrete syntax. Described at http://www.w3.org/
TR/owl-xmlsyntax/#owls DataValue.

DatavaluedPropertyAtom

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), DatavaluedPropertyAtom associates either a
variable or an OWL individual with a datatype prop-
erty in the RDF concrete syntax. Formally defined at
http://www.w3.org/Submission/SWRL/swrl.rdf.

datavaluedPropertyAtom

As part of the SWRL XML namespace (http://www.w3.org/2003/
11/swrlx), datavaluedPropertyAtom associates either a
variable or an OWL individual with a datatype property
in the XML concrete syntax. Described on page 242 as
well as at http://www.w3.org/Submission/SWRL/#owls
datavaluedPropertyAtom.

DifferentIndividualsAtom

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), DifferentIndividualsAtom relates two owl:Thing

instances with an owl:differentFrom statement in the RDF concrete
syntax. Formally defined at http://www.w3.org/Submission/SWRL/
swrl.rdf.

differentIndividualsAtom

As part of the SWRL XML namespace (http://www.w3.org/2003/
11/swrlx), differentIndividualsAtom relates two or more
variables or OWL individuals with owl:differentFrom statements
in the XML concrete syntax. Described on page 243 as well
as at http://www.w3.org/Submission/SWRL/#owls different

IndividualsAtom.

head

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), head defines the consequent (the then clause) of
a SWRL rule in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

head

As part of the RuleML namespace (http://www.w3.org/2003/
11/ruleml), head defines the consequent (the then clause) of a
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SWRL rule in the XML concrete syntax. Described on page 240 as
well as at http://www.w3.org/Submission/SWRL/#owls consequent.

Imp

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), Imp defines a SWRL rule in the RDF concrete syntax. For-
mally defined at http://www.w3.org/Submission/SWRL/swrl.rdf.

imp

As part of the RuleML namespace (http://www.w3.org/2003/11/
ruleml), imp defines a SWRL rule in the XML concrete syntax.
Described on page 239 as well as at http://www.w3.org/Sub-
mission/SWRL/#owls Rule.

Individual

As part of the OWL XML namespace (http://www.w3.org/
2003/05/owl-xml), Individual specifies an OWL individual in the
XML concrete syntax. Described at http://www.w3.org/TR/owl-
xmlsyntax/#owls IndividualID.

IndividualPropertyAtom

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), IndividualPropertyAtom associates either a variable
with an OWL individual or two OWL individuals with an
object property in the RDF concrete syntax. Formally defined
at http://www.w3.org/Submission/SWRL/swrl.rdf.

individualPropertyAtom

As part of the SWRL XML namespace (http://www.w3.org/2003/
11/swrlx), individualPropertyAtom associates a vari-
able with an OWL individual, two variables or two
OWL individuals with an object property in the XML
concrete syntax. Described on page 241 as well as at
http://www.w3.org/Submission/SWRL/#owls individual-

PropertyAtom.

propertyPredicate

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), propertyPredicate relates an Atom or any of its
subclasses to a property in the RDF concrete syntax. Formally
defined at http://www.w3.org/Submission/SWRL/swrl.rdf.

rlab

As part of the RuleML namespace (http://www.w3.org/2003/11/
ruleml), rlab is an optional element for declaring a rule label
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in the XML concrete syntax. Described on page 239 as well
as at http://www.w3.org/Submission/SWRL/#owls rlab.

SameIndividualAtom

As part of the SWRL RDF namespace (http://www.w3.org/2003/
11/swrl), SameIndividualAtom relates two owl:Thing instances
with an owl:sameAs statement in the RDF concrete syn-
tax. Formally defined at http://www.w3.org/Submission/SWRL/
swrl.rdf.

sameIndividualAtom

As part of the SWRL XML namespace (http://www.w3.org/
2003/11/swrlx), sameIndividualAtom relates two or
more variables or OWL individuals with owl:sameAs

statements in the XML concrete syntax. Described on
page 242 as well as at http://www.w3.org/Submission/
SWRL/#owls sameIndividualAtom.

var

As part of the RuleML namespace (http://www.w3.org/2003/
11/ruleml), var defines a SWRL variable declaration in the
XML concrete syntax. Described on page 238 as well as at
http://www.w3.org/Submission/SWRL/#owls Variable.

Variable

As part of the SWRL RDF namespace (http://www.w3.org/
2003/11/swrl), Variable defines a SWRL variable dec-
laration in the RDF concrete syntax. Formally defined at
http://www.w3.org/Submission/

SWRL/swrl.rdf.
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SPARQL

SPARQL is a recursive acronym for the SPARQL Protocol and RDF Query
Language. This appendix contains several examples of the SPARQL query
language and details, in alphabetical order, the operators and keywords that
are part of the SPARQL recommendation. In the case of keywords, we give a
short description. We list page numbers if a keyword or example is described
in finer detail in the book. Also, we provide a reference URL to additional
information in the W3C reference.

SPARQL Examples

The following examples can also be found in Chapter 6, ‘‘Discovering Infor-
mation.’’

# George Washington’s Namesakes

SELECT ?location

WHERE {

?person <http://www.w3.org/2000/01/rdf-schema#label>

“George Washington“@en.

?location <http://dbpedia.org/property/namedFor> ?person

}

555
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# George Washington’s Namesakes using prefixes

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

SELECT ?location

WHERE {

?person rdfs:label “George Washington“@en.

?location dbprop:namedFor ?person

}

# A sorted query for information on George Washington

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?job ?birthLoc ?picture

WHERE {

?person rdfs:label “George Washington“@en;

dbprop:occupation ?job;

dbprop:birthPlace ?birthLoc;

foaf:img ?picture

} ORDER BY ?birthLoc DESC(?job)

# Information about Tim Berners-Lee’s FOAF friends

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX karl:

<http://www.w3.org/People/karl/karl-foaf.xrdf#>

SELECT ?personName2 ?predicate ?object

FROM <http://www.w3.org/People/Berners-Lee/card>

FROM <http://www.w3.org/People/karl/karl-foaf.xrdf>

FROM <http://www.koalie.net/foaf.rdf>

FROM <http://heddley.com/edd/foaf.rdf>

FROM <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM <http://www.dajobe.org/foaf.rdf>

FROM <http://www.isi.edu/∼gil/foaf.rdf>
FROM <http://www.ivan-herman.net/foaf.rdf>

FROM <http://www.kjetil.kjernsmo.net/foaf>

FROM <http://www.lassila.org/ora.rdf>

FROM <http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

tbl:i foaf:knows ?person.

?person foaf:name ?personName1;

rdfs:seeAlso ?iri.

?iri foaf:primaryTopic ?person2.

?person2 foaf:name ?personName2;

?predicate ?object

FILTER(?personName1 = ?personName2).

}
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# Various names of Tim Berners-Lee’s FOAF friends

# using named graphs

PREFIX tbl: <http://www.w3.org/People/Berners-Lee/card#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT *

FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://www.isi.edu/∼gil/foaf.rdf>
FROM NAMED <http://www.ivan-herman.net/foaf.rdf>

FROM NAMED <http://www.kjetil.kjernsmo.net/foaf>

FROM NAMED <http://www.lassila.org/ora.rdf>

FROM NAMED

<http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?originGraph {

:blank1 foaf:knows :blank2.

:blank2 rdf:type foaf:Person;

foaf:nick ?nickname;

foaf:name ?realname

}

}

# A filtered SPARQL query for any information regarding

# George Washington’s last term as the President of the

# United States

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

SELECT ?prop ?object

WHERE {

?person rdfs:label “George Washington“@en;

dbprop:presidentStart ?start;

?prop ?object.

FILTER(xsd:integer(?start) + 4 <=

xsd:integer(?object))

}

# An optional SPARQL query that may return an image,

# mailbox or last name of any given set of FOAF friends

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

?person foaf:name ?name.
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OPTIONAL {

?person foaf:img ?img;

foaf:mbox ?mbox;

foaf:family name ?fName

}

}

# Returning FOAF information with a CONSTRUCT statement

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ms: <http://www.mindswap.org/2003/owl/mindswap#>

CONSTRUCT {

?person rdf:type foaf:Person;

foaf:name ?rname;

foaf:homepage ?hpage;

foaf:nick ?nick;

foaf:mbox ?mbox.

}

FROM NAMED <http://www.kjetil.kjernsmo.net/foaf>

FROM NAMED <http://www.dajobe.org/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/∼hendler/2003/foaf.rdf>
FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://www.isi.edu/∼gil/foaf.rdf>
FROM NAMED <http://www.ivan-herman.net/foaf.rdf>

FROM NAMED <http://www.lassila.org/ora.rdf>

FROM NAMED

<http://www.mindswap.org/2004/owl/mindswappers>

WHERE {

GRAPH ?originGraph {

# This pattern now returns information for everyone

# except www.mindswap.org.

{

:blank1 foaf:knows ?person.

?person rdf:type foaf:Person.

# If we find a foaf:Person, then make sure we

# either the nickname and/or the name and/or the

# homepage. If we had omitted the FILTER clause,

# then we could have returned a query solution

# containing ?orginGraph and no other

# information!

OPTIONAL { ?person foaf:nick ?nick }.

OPTIONAL { ?person foaf:name ?rname }.

OPTIONAL { ?person foaf:homepage ?hpage }.

FILTER(bound(?nick) || bound(?rname) ||
bound(?hpage))

}

# Here’s where we grab www.mindswap.org folks of
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# all stripes. We are claiming that any friends we

# find will have triples declaring his/her name,

# homepage and mailbox.

UNION {

{ ?person rdf:type ms:Affiliate }

UNION

{ ?person rdf:type ms:Alumni }

UNION

{ ?person rdf:type ms:Faculty }

UNION

{ ?person rdf:type ms:Programmer }

UNION

{ ?person rdf:type ms:Researcher }

UNION

{ ?person rdf:type ms:GraduateStudent }

UNION

{ ?person rdf:type ms:UndergraduateStudent } .

?person foaf:name ?rname;

foaf:homepage ?hpage;

foaf:mbox ?mbox

}

}

}

# Using a DESCRIBE statement for George Washington

PREFIX rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbpedia: <http://dbpedia.org/resource/>

DESCRIBE *

WHERE {

?person ?anyProperty dbpedia:George Washington

}

# An ASK SPARQL query determining whether George

# Washington was president in the year 1795

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

ASK

WHERE {

?person rdfs:label “George Washington“@en;

dbprop:presidentStart ?startDate;

dbprop:presidentEnd ?endDate.

FILTER(xsd:integer(?startDate) < xsd:integer(’1795’)

&&

xsd:integer(?endDate) > xsd:integer(’1795’))

}
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Operators

This section contains a list of all supported SPARQL query language operators
as documented in the W3C SPARQL Recommendation (http://www.w3.org/
TR/rdf-sparql-query/#OperatorMapping). To avoid duplication, some oper-
ators are specified here while others are discussed in the ‘‘Keywords’’ section.
We provide short examples of each operator.

Unary Operators
Unary operators are those operations that require only a single argument.

!boolExpr Returns true if boolExpr is false and returns false if
boolExpr is true.

!(true) will return false.

+numericExpression Returns the positive value of numericExpression.

xsd:integer(?startDate) < +xsd:integer(’1795’)
-numericExpression Returns the negative value of numericExpression.

xsd:integer(?startDate) > -xsd:integer(’1795’)

BOUND(?variable) Detailed in the ‘‘Keywords’’ section.

BOUND(?x)

DATATYPE(iri) Detailed in the ‘‘Keywords’’ section.

FILTER(DATATYPE(?startDate) = xsd:integer)

isBLANK(iri) Returns true if iri is a blank node; otherwise false.

isBLANK(?x)

isLITERAL(lit) Returns true if lit is an RDF literal; otherwise false.

isLITERAL(?x)

isIRI(iri) Detailed in the ‘‘Keywords’’ section.

isIRI(?x)

isURI(iri) Detailed in the ‘‘Keywords’’ section.

isURI(?x)

LANG(iri) Detailed in the ‘‘Keywords’’ section.

LANG(?x)

STR(iri) Detailed in the ‘‘Keywords’’ section.

STR(?x)
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Binary Operators
Binary operators are those operations that require two arguments. Any refer-
ence to types is specific to XML Schema datatypes.

boolExpr1 || boolExpr2 Returns true if either boolExpr1 or boolExpr2 is
true; otherwise it returns false.

FILTER(?x > 0 || ?y = 1)

boolExpr1 && boolExpr2 Returns true if both boolExpr1

and boolExpr2 are true; otherwise it returns false.

FILTER(?x > 0 && ?y = 1)

expr1 = expr2 Returns true if expr1 and expr2 are equal in value;
otherwise it returns false. expr1 and expr2 can be of numeric,
literal, boolean, string, or dateTime types as well as RDF terms.

FILTER(?x = ?y)

expr1 != expr2 Returns true if expr1 and expr2 are not equal in
value; otherwise it returns false. expr1 and expr2 can be of numeric,
literal, boolean, string, or dateTime types as well as RDF terms.

FILTER(?x != ?y)

expr1 < expr2 Returns true if expr1 is less than expr2 in
value; otherwise it returns false. expr1 and expr2 can be
of numeric, literal, boolean, string, or dateTime types.

FILTER(?x < ?y)

expr1 > expr2 Returns true if expr1 is greater than expr2 in
value; otherwise it returns false. expr1 and expr2 can be
of numeric, literal, boolean, string, or dateTime types.

FILTER(?x > ?y)

expr1 <= expr2 Returns true if expr1 is less than or equal to
expr2 in value; otherwise it returns false. expr1 and expr2 can
be of numeric, literal, boolean, string, or dateTime types.

FILTER(?x <= ?y)

expr1 >= expr2 Returns true if expr1 is greater than or equal
to expr2 in value; otherwise it returns false. expr1 and expr2

can be of numeric, literal, boolean, string, or dateTime types.

FILTER(?x >= ?y)

numericExpr1 * numericExpr2 Returns the product of numericExpr1 and
numericExpr2.

FILTER(?x > ?y*5)
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numericExpr1 / numericExpr2 Returns the quotient of dividing
numericExpr1 by numericExpr2.

FILTER(?x > ?y/5)

numericExpr1 + numericExpr2 Returns the sum of numericExpr1 and
numericExpr2.

FILTER(?x > ?y+5)
numericExpr1 - numericExpr2 Returns the difference between
numericExpr1 and numericExpr2.

FILTER(?x > ?y-5)

langMATCHES(iri1, iri2) Detailed in the ‘‘Keywords’’ section.

langMATCHES(?x, "en")

sameTERM(iri1, iri2) Detailed in the ‘‘Keywords’’ section.

sameTERM(?x, ?y)

REGEX(string, pattern) Returns true if pattern is found in string;
otherwise false. Both arguments must be simple literals.

REGEX(?input, "John")

Trinary Operators
Trinary (aka ternary) operators are those operations that require three argu-
ments.

REGEX(string, pattern, flags) Returns true if pattern is found in
string as dictated by the flags argument; otherwise false. Both
arguments must be simple literals. Flags, described in detail at
http://www.w3.org/TR/xpath-functions/#flags, is an xsd:string

of any of the following concatenated character arguments:

i If present, then match pattern against string in a case-insensitive
manner.

m If present, then match pattern against string where
string supports multiple lines. This affects how charac-
ters ˆ , $, and newline characters are interpreted.

s If present, then match pattern against string where string supports
single lines.

x If present, then remove all whitespaces in pattern before matching.
The sole exception is against any whitespaces present in a character
class exception (i.e., those delimited with a set of square brackets).

REGEX(?input, "John", "is")
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Keywords

The SPARQL Recommendation notes the set of keywords that are part of
the query language. They are listed here in alphabetical order along with a
description of each. Note that there is some overlap with some of the operators
described in the previous section (for example, REGEX, sameTERM), but they
are listed here for completeness as part of the Recommendation’s Extended
Backus-Naur Form (EBNF).

a A shortcut keyword that can be used in place of the predicate IRI
http://www.w3.org/1999/02/22-rdf-syntax-ns#type. Described
at http://www.w3.org/TR/rdf-sparql-query/#abbrevRdfType.

ASK A SPARQL query form that tests whether or not a query
has a matching graph pattern or not. Described on page 225 as
well as http://www.w3.org/TR/rdf-sparql-query/#ask.

BASE Defines a base IRI that resolves relative IRIs. Described on page
224 as well as http://www.w3.org/TR/rdf-sparql-query/#relIRIs.

BOUND Returns true if the given variable is bound to a value, or
else it returns false. Variables with values of NAN (not a number) or
INF (infinity) are considered not bound. Described on page 220 as
well as http://www.w3.org/TR/rdf-sparql-query/#func-bound.

CONSTRUCT A SPARQL query form that returns a single RDF graph
as specified by the query’s graph template. Described on page 222 as
well as http://www.w3.org/TR/rdf-sparql-query/#construct.

DATATYPE This keyword returns the datatype of a given lit-
eral. Simple literals will always return xsd:string. Described at
http://www.w3.org/TR/rdf-sparql-query/#func-datatype.

DESCRIBE A SPARQL query form that returns a single RDF
graph for a set of RDF resources. Described on page 224 as well
as http://www.w3.org/TR/rdf-sparql-query/#describe.

DISTINCT This keyword guarantees that duplicate query results
that are bound to identical variables are removed. Described at
http://www.w3.org/TR/rdf-sparql-query/#modDistinct.

false A keyword that is shorthand for the literal ‘‘false" ˆ ˆ xsd:
boolean. Described at http://www.w3.org/TR/rdf-sparql-query/
#QSynLiterals.

FILTER Restricts the number of solutions in a result set based on a
given expression. Described on page 213 as well as http://www.w3.org/
TR/rdf-sparql-query/#tests.
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FROM Specifies a default RDF dataset against which a query is per-
formed. The dataset is identified by an IRI. Described on page 202 as well
as http://www.w3.org/TR/rdf-sparql-query/#specifyingDataset.

FROM NAMED Specifies a named RDF dataset against which a query
is performed. The dataset is identified by an IRI. Described on page
202 as well as http://www.w3.org/TR/rdf-sparql-query/#specifying
Dataset.

GRAPH Used in conjunction with named graphs, GRAPH specifies both
a variable and a graph pattern. The variable specifies the named graph
against which the graph pattern is executed. Described on page 206 as
well as http://www.w3.org/TR/rdf-sparql-query/#queryDataset.

isIRI A SPARQL operator that returns true if the given value is an IRI
or false otherwise. Described at http://www.w3.org/TR/rdf-sparql-
query/#func-isIRI.

isLITERAL A SPARQL operator that returns true if the given
value is an RDF literal or false otherwise. Described at
http://www.w3.org/TR/rdf-sparql-query#func-isLiteral.

isURI Identical in functionality to isIRI, isURI returns true

if the given value is an IRI or false otherwise. Described at
http://www.w3.org/TR/rdf-sparql-query/#func-isIRI.

LANG This keyword returns the language tag of a given
literal; otherwise it returns an empty string. Described at
http://www.w3.org/TR/rdf-

sparql-query/#func-lang.

LANGMATCHES A SPARQL operator that takes two arguments.
LANGMATCHES returns true if the first argument is a member of the
language tags passed in the second argument. Otherwise, it returns
false. Described at http://www.w3.org/TR/rdf-sparql-query/#func-
langMatches.

LIMIT Places an upper bound on the number of results returned in a
result set. Described on page 211 as well as http://www.w3.org/TR/rdf-
sparql-query/#modResultLimit.

OFFSET This keyword causes the solutions generated in a result set
to begin after a given number of solutions. Described on page 211 as
well as http://www.w3.org/TR/rdf-sparql-query/#modOffset.

OPTIONAL Notes that certain portions of a graph pattern are not
required as part of a query but should be included if there is a match.
Described on page 215 as well as http://www.w3.org/TR/rdf-sparql-
query/#OptionalMatching.
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ORDER BY This keyword enables solutions in a result set to
be arranged by one or more variables in either an ascend-
ing or descending order. Described on page 210 as well as
http://www.w3.org/TR/rdf-sparql-query/#modOrderBy.

PREFIX Allows a prefix label to be associated with a given IRI. Described
on page 197 as well as http://www.w3.org/TR/rdf-sparql-query/

#prefNames.

REDUCED A weaker version of DISTINCT, this keyword signals the
SPARQL endpoint to optionally remove duplicate solutions. Described
on page 210 as well as http://www.w3.org/TR/rdf-sparql-query/

#modReduced.

REGEX Specifies that the XPath function fn:matches should
be used to match a given pattern against a given text string.
Optional flags are also available. Described on page 215 as well
as http://www.w3.org/TR/rdf-sparql-query/#funcex-regex.

sameTERM This keyword returns true if the two given arguments
are equal RDF terms. Otherwise it returns false. Described at
http://www.w3.org/TR/rdf-sparql-query/#func-sameTerm.

SELECT A SPARQL query form that returns a set of variables
and their bindings in an XML result set. Described on page 197 as
well as http://www.w3.org/TR/rdf-sparql-query/#select.

STR A SPARQL operator that returns the string representation of a given
literal or IRI. Described at http://www.w3.org/TR/rdf-sparql-query/
#func-str.

true A keyword that is shorthand for the literal ‘‘true" ˆ ˆ xsd:boolean.
Described at http://www.w3.org/TR/rdf-sparql-query/#QSynLiterals.

UNION Allows for the result sets of two or more graph patterns
to be combined into a single result. Described on page 219 as well
as http://www.w3.org/TR/rdf-sparql-query/#alternatives.

WHERE This keyword precedes a graph pattern that is used to match
RDF data against some set of RDF datasets. Described on page 193 as
well as http://www.w3.org/TR/rdf-sparql-query/#GraphPattern.
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Jena Reference Guide

The programming examples in this Appendix use the Jena Semantic Web
Framework. This reference guide contains two parts: the key Jena classes and
the main programming steps for using the Jena Semantic Web Framework.

The first part contains the key classes and presents them in alphabetic order.
The second part contains the main Jena programming steps and presents them
in life-cycle order.

N O T E The Jena class descriptions are adapted from the Javadocs that are
available in the downloaded Jena zip file. The Javadocs also contain additional
details regarding associated classes, methods, and parameters.

Key Jena Classes

The following sections describe the key Jena classes.

DIGReasoner Class
This reasoner is the generator of inference graphs (InfGraph) that can use an
external DIG inference engine to perform DL reasoning tasks.

bind(), bindSchema() binds a given graph to the external reasoner.

configure() configures reasoner properties.

567
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DIGReasonerFactory Class
This is a factory class for generating instances of DIG reasoners. It implements
the singleton pattern.

create() creates a DIG reasoner.

Graph Interface
This is the interface that must be satisfied by implementations maintaining
collections of RDF triples. The core interface is small (add, delete, find,
contains) and is augmented by additional classes to handle more complicated
matters such as reification, query handling, bulk update, event management,
and transaction handling. It enables alternate persistence mechanisms through
implementing the Graph methods.

IDBConnection Interface
This interface encapsulates the specification of a Java Database Connectivity
(JDBC) connection, mostly used to simplify the calling pattern for ModelRDB

factory methods.

InfModel Interface
This is an extension to the normal Model interface that supports access to any
underlying inference capability.

In Jena the primary use of inference is to generate entailments from a set of
RDF data. These entailments manifest as additional RDF data in the inferred
model and are accessed through the normal API.

A few reasoner services cannot be made directly available in this way,
and the InfGraph extension gives access to these, such as access to valida-
tion/consistency checking and derivation traces.

Model Interface
An RDF model is a set of statements. Methods are provided for creating resour-
ces, properties, and literals, and the statements that link them, for adding
statements to and removing them from a model, for querying a model, and set
operations for combining models.

Models may create resources (URI nodes and bnodes). Creating a resource
does not make the resource visible to the model; resources are only ‘‘in’’
models if statements about them are added to the model. Similarly, the only
way to ‘‘remove’’ a resource from a model is to remove all the statements that
mention it.
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When a resource or literal is created by a model, the model is free to reuse
an existing resource or literal object with the correct values, or it may create
a fresh one. (All Jena RDFNodes and statements are immutable, so this is
generally safe.)

This interface defines a set of primitive methods. A set of convenience
methods that extends this interface, for example, performing automatic type
conversions and support for enhanced resources, is defined in ModelCon.

add() provides various ways to add statements and other models.

close() releases all computing resources and completes any pending oper-
ations.

createXXXX() enables the creation of various model resources, where XXXX

can stand for Resource, Statements, Property, Literal, List, and more.

enterCriticalSection() and leaveCriticalSection() enable multi-
threading.

query() enables a basic matching query.

remove() removes statements.

write() outputs the model contents in various formats.

ModelFactory Class
This static class creates standard model objects.

createDefaultModel() creates an in-memory model with a standard reifi-
cation style.

createFileModelmaker() creates an in-memory ModelMaker backed by a
file store.

createInfModel() builds an inference model from parameter InfGraph.

createModelForGraph() builds a model from parameter Graph.

createRDBMaker() builds a model associated with IDBConnection
database.

createOntologyModel() builds an OntModel.

ModelMaker Interface
A ModelMaker contains a collection of named models, methods for creating
new models (both named and anonymous) and opening previously named
models, removing models, and accessing a single default model for this maker.

createDefaultModel() is similar to the ModelFactory class method.
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OntModelSpec Class
This class encapsulates a description of the components of an ontology model,
including the storage scheme, reasoner, and language profile.

N O T E Refer to the Javadocs for specific settings.

Query Class
This is a class of graph queries, as well as some machinery for implementing
them. The data structure for a query is presented externally. There are two ways
of creating a query: using the parser to turn a string description of the query
into the executable form, and the programmatic way (the parser is calling
the programmatic operations driven by the query string). The declarative
approach of passing in a string is preferred. Once a query is built, it can be
passed to the QueryFactory to produce a query execution engine.

QueryExecution Interface
This interface results in a single execution of a query.

execSelect() executes a SELECT query.

execConstruct() executes a CONSTRUCT query.

execDescribe() executes a DESCRIBE query.

execAsk() executes an ASK query.

close() releases resources that are associated with the query.

QuerySolution Interface
This interface results in a single answer from a SELECT query.

get() returns the value of the named variable parameter.

contains() returns true if the named variable is in this binding.

getLiteral() returns the literal of the named variable parameter.

varNames() iterates over the variable names in the QuerySolution.

ObjectListener Class
This listener funnels all the changes into added/removed.

added() overrides base functionality to track all objects added to the model.

addedStatement() overrides base functionality to track the addition of a
single statement.

removed() overrides base functionality to track any removal of objects from
the model.
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removedStatement() overrides base functionality to track the removal of a
single statement.

OntClass Interface
This interface represents an ontology node characterizing a class description.

createIndividual() creates or finds an existing Individual given a URI
parameter.

getSubClass() provides the subclass.

getSuperClass() provides the superclass.

addSuperClass() adds the parameter as a superclass.

OntModel Interface
This interface provides an enhanced view of a Jena model that is known to
contain ontology data, under a given ontology vocabulary (such as OWL). This
class does not by itself compute the deductive extension of the graph under the
semantic rules of the language. Instead, we wrap an underlying model with
this ontology interface, which presents a convenient syntax for accessing the
language elements. Depending on the inference capability of the underlying
model, the OntModel will bapp05ar to contain more or less triples.

In addition to the Model methods, OntModel adds an ontology for restrictions
and logical relationships. Following is a sample—see the Javadocs for the
complete method list.

createSymmetricProperty() sets the symmetric property to the URI
parameter.

createTransitiveProperty() sets the transitive property to the URI
parameter.

createOntResource() creates or finds an OntResource with the given URI
parameter.

getOntology() gets an Ontology resource to provide metadata regarding
the ontology.

Ontology Interface
This interface encapsulates the distinguished instance in a given ontology
document; it presents metadata and other processing data about the document
(including which other documents are imported by a document).

getBackwardCompatibleWith() obtains the ontology repre-
sented as a resource that is compatible with this model.
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getPriorVersion() obtains the ontology that was superseded by the cur-
rent ontology.

listImports() provides an iterator that lists all imports into this ontology.

OntProperty Interface
This interface encapsulates a property in an ontology. This is an extension to
the standard Property interface, adding a collection of convenience methods
for accessing the additional semantic features of properties in OWL, RDFS,
and DAML+OIL, such as domain, range, or inverse. Not all such capabilities
exist in all supported ontology languages.

addInverseOf() adds a property that is the inverse of the parameter prop-
erty.

addSubProperty() adds a subproperty of this property.

convertToDatatypeProperty() converts to a datatype property.

convertToObjectProperty() converts to an object property.

OntResource Interface
This interface provides a common supertype for all of the abstractions in this
ontology representation package.

RDFNode Interface
This interface covers RDF resources and literals. It allows probing whether a
node is a literal (blank URI resource), moving nodes from model to model,
and viewing them as different Java types using the .as() polymorphism.

isLiteral() is true if RDFNode is a literal.

as() converts to different implementations based on the Class parameter.

toString() provides a string representation.

Reasoner Interface
This is the minimal interface to which all reasoners (or reasoner adaptors)
conform. This only supports attaching the reasoner to a set of RDF graphs
that represent the rules or ontologies and instance data. The actual reasoner
requests are made through the InfGraph, which is generated once the reasoner
has been bound to a set of RDF data.

bind() attaches the reasoner to a parameter graph or model.

bindSchema() attaches the reasoner to a graph or model representing the
ontology.
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getReasonerCapabilities() returns a description of the reasoner
capabilities.

Resource Interface
This is an RDF resource. When created, the resource instances may be asso-
ciated with a specific model. Resources created by a model will refer to
that model and support a range of methods, such as getProperty() and
addProperty(), which will access or modify that model. This enables the
programmer to write code in a compact and easy style.

Resources created by ResourceFactory will not refer to any model and
will not permit operations that require a model. Such resources are useful as
general constants.

This interface provides methods supporting typed literals. This means that
methods are provided that will translate a built-in type or an object to an RDF
literal. This translation is done by invoking the toString() method of the
object or its built-in equivalent. The reverse translation is also supported. This
is built in for built-in types. Factory objects, provided by the application, are
used for application objects.

addProperty() adds the property to this resource.

toString() provides a string representation of the resource.

getURI() returns the URI of the resource.

begin() begins a transaction in the associated model.

commit() commits the transaction in the associated model.

abort() aborts the transaction in the associated model.

ResultSet Interface
This interface provides results from a query in a table-like manner for SELECT
queries. Each row corresponds to a set of bindings that fulfill the conditions of
the query. You access the results by variable name.

hasNext() is true or false if there is an additional returned row.

next() moves to the next result possibility.

getResultVars() returns a list of variable names contained in the result set.

Statement Interface
This interface is an RDF statement. A statement is not a resource, but it can
produce a reified statement that represents it and from which the statement
can be recovered.
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A statement instance tracks which model created it, if any. All the resource
components of a statement are in the same model as the statement, if it has
one, and are in no model if the statement isn’t in a model.

changeObject() changes the object portion of the statement with the
parameter.

createReifiedStatement() creates a reified statement that embodies this
statement.

equals() determines whether two statements are equal.

getModel() gets the model in which this statement was created.

getResource() gets the object of the statement.

isReified() determines if the statement is reified.

StmtIterator Interface
This interface is an iterator that returns RDF statements. RDF iterators are
standard Java iterators, except that they have extra methods to return specif-
ically typed objects, in this case RDF statements, and have a close() method
that should be called to free resources if the application does not complete the
iteration.

nextStatement() returns the next statement in the iteration.

ValidityReport Interface
This interface is a data structure that is used to report the results of validation
or consistency-checking operations. It is an array of reports, each of which has
a severity, a type (string), and a description (string).

getReports() returns an iterator over ValidityReport.Report records.

isClean() returns true if the model is both valid (logically consistent) and
has no warnings.

isValid() returns true if no logical inconsistencies exist.

Main Programming Steps

The following summary outlines each of the major programming steps for
using the Jena Semantic Web Framework. Each step contains working code
and uses the classes that were outlined previously.
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Establishing the Model

OntModel ontmodel=ModelFactory.createOntologyModel();

ModelMaker maker=ModelFactory.createModelRDBMaker(conn);

Model modelTmp=maker.createModel(“ModelName“);

OntModelSpec spec=new OntModelSpec(OntModelSpec.OWL MEM);

OntModel ontModelDB =

ModelFactory.createOntologyModel(spec,modelTmp);

Populating the Model

ontmodel.read(“http://xmlns.com/foaf/spec/index.rdf“);

ontmodel.read(“/ontologies/foaf.rdf“);

ontmodel.add(otherModel);

ontmodel.add(Resource, Property, Resource);

Querying the Model

Query query=QueryFactory.create(“Select ?s ?p ?o WHERE {?s ?p ?o}“);

QueryExecution qexec=QueryExecutionFactory.create(query,ontmodel);

ResultSet results=qexec.execSelect( );

While( results.hasNext()){

QuerySolution soln=response.nextSolution();

RDFNode name=soln.get(“?o“);

System.out.println(name.toString());

}

Binding a Reasoner to the Model

Reasoner reasoner=PelletReasonerFactory.theInstance().create();

reasoner=reasoner.bindSchema(ontmodel);

InfModel inferredModel=ModelFactory.createInfModel(reasoner,ontmodel);

Exporting the Model

FileOutputStream outModel;

outModel=new FileOutputStream(“/outputfile.turtle“);

ontModel.write(outModel,“TURTLE.ttl“);
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Installation Reference

Guide

This appendix offers a quick reference to all the software components used in
the book. The list is alphabetized so that you can find items quickly.

D2RQ: Conversion from Relational Database to
Jena Model

D2RQ converts a relational database to a Jena model. This allows direct Jena
access to the database (found at http://www4.wiwiss.fu-berlin.de/bizer/
D2RQ/spec/).

1. Download the .zip file for the D2RQ API at http://sourceforge.net/
project/showfiles.php?group id=111002.

2. Expand the .zip file in the desired directory.

3. Add the .jar files to the Java classpath. (You can also run
commands in Windows, as described in Chapter 8.)

N O T E The complete Javadocs are found under /doc.

577



578 Appendix F ■ Installation Reference Guide

Eclipse Integrated Development Environment

Eclipse provides a full development environment for Java applications, includ-
ing a code-aware editor, documentation reference, and debugger (found at
http://www.eclipse.org/downloads/).

1. Select Eclipse IDE for Java Developers for your given operating system:
Windows, Mac OS X, or Linux.

2. Expand the compressed file, a .zip file or .tar file, in the desired direc-
tory.

3. Run eclipse.app in Mac, eclipse.exe in Windows, or eclipse in
Linux. When you run Eclipse for the first time, you need to select the edi-
tor in the Welcome window.

4. Select File � New � New Java Project, and you are ready to go.

Java Classpath

All of the programming libraries used throughout the book are in the Java
programming language. Your application must be aware of the location of
these library files. For that, the Java classpath indicates the location of all
compiled files, which can be both in the native class structure file or an
archived set of class files in a .jar file. The Java classpath contains directories
of class files and locations of the specific .jar files. Each referenced Java class
must be included in your Java program’s classpath via a reference to its class
directory or its .jar file. A missing reference generates the ‘‘Class Not Found’’
exception when the class is referenced at runtime.

There are several ways to set the classpath specific to each operating system.
You can set the classpath in the command line when calling the Java program,
set an environment variable in Windows and Unix/Mac, or have a Java IDE set
it for you. We examine all three. (Note that you can also set the classpath within
the .jar file. This is not demonstrated here.)

When executing your Java program, you invoke the Java virtual machine
by using the java command. This command takes several options, including
classpath settings. The following is an example:

$ java –classpath /directory1/common.jar:/directory2/gui.jar:

/directoryofclassfiles javaclass

Note that you separate multiple .jar file locations with a colon.
Setting an environment variable in Windows is done by opening the Win-

dows Control Panel through the Start menu. Next, launch System Properties.
Select the Advanced tab. Figure F-1 illustrates the Advanced tab of the System
Properties window.
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Figure F-1 Windows Advanced System Properties window

1. Click the Environment Variables button.

2. Click the New button under System Variables.

3. Enter the classpath variable name along with its value. Figure F-2 shows
the classpath populated with both a .jar file and a directory of class
files. Files and directories must be separated by a semicolon. You need
to list every .jar file separately; this can get quite tedious, but it is
necessary. Don’t forget to include your own files in the classpath, or
Java will fail immediately by not finding your application classes.

Setting an environment variable in Unix requires a change to
your profile generation. This can be done globally by adding a
variable to /etc/profile or individually by adding the variable
to your specific shell environment file in your home directory.
The BASH shell is found in your home directory under the file
.base profile. In either case, you enter the following lines:
CLASSPATH= \
/directory/common.jar:/directory2/gui.jar:/directoryofclasses

EXPORT CLASSPATH

Note that CLASSPATH is all uppercase. You must remember to execute
the file within your current shell or launch a new shell. You can
execute the file by using $ . ./base profile or . /etc/profile.

4. Test the proper setting by using the echo command (echo $CLASSPATH).
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Figure F-2 Setting a new system variable in Windows

5. To set the classpath through the IDE (demonstrated here with
Eclipse since Eclipse is used), right-click on the Java project for
which you wish to set the classpath. This brings up a long menu.

6. Select Build Path � Configure Build Path. A window opens, listing
the current setting of the Java classpath, as shown in Figure F-3.

7. Select Add External JARs.

8. Select the appropriate .jar file(s) within your file system. (Eclipse
also links to the documentation, which is very useful.)

JAXB-RI

JAXB provides a convenient way to process XML content using Java objects
by binding its XML schema to a Java representation.

You can download the latest version from the Downloads link on the
reference site (https://jaxb.dev.java.net/). The site also points to useful
documentation and tutorials.
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Figure F-3 Setting the classpath in Eclipse IDE

1. Download the .zip file, such as JAXB RI 2.1.9.zip.

2. Expand it in the desired directory.

3. Add the .jar files in the lib directory to the Java classpath.

Jena Semantic Web Framework

The RDF, RDFS, and OWL programming framework is found at http://jena.
sourceforge.net/.

The download consists of a .zip file that contains all necessary .jar files
contained in the lib directory as well as examples and documentation.

1. Download the jena.zip file.

2. Expand the .zip file in the desired directory.

3. Add the .jar files in the lib directory to the Java classpath.

4. Examine the various classes and methods by loading doc/javadoc/

index.html into your browser.
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JDBC Driver for MySQL

This driver enables JDBC access to a MySQL database and is found at
http://dev.mysql.com/downloads/connector/j/5.1.html.

1. Download the .zip file.

2. Expand the .zip file in the desired directory.

3. Add the mysql-connector-java-5.1.7-bin.jar file to the Java class-
path.

N O T E The full documentation explains the various options.

Pellet Reasoner

This reasoner is exposed via .jar files or a remote DIG interface (found at
http://clarkparsia.com/pellet/).

1. Download the .zip file

2. Expand the .zip file in the desired directory

3. Add the .jar files to the /lib directory.

4. For the DIG interface, start the standalone pellet through pellet-dig.sh

(pellet.sh for Pellet 2.x) for Linux/Mac or pellet-dig.bat

(pellet.bat for Pellet 2.x) for Windows. The default port for
DIG is port 8081. You can use another port by providing the
argument -port XXXX, where XXXX is an available port.

Protégé Ontology Editor

This ontology editor can incorporate queries and reasoners (found at
http://protege.stanford.edu/).

1. Download for the appropriate operating system.

2. You have two choices: a .zip file you expand or an automatic installer.

3. Run protege.app.

4. You can link to the Pellet reasoner by selecting Pellet from the Rea-
soner menu.
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Tar/Gzipped Files

Tar files consist of an archive of files. In addition, gzipped compresses files.
Therefore, a tar/gzipped file contains an archive of compressed files. Uncom-
pressing and unzipping such files is a two-step operation. First you unpack
the archive, and second you expand the compressed files. The following
commands do just that:

gunzip compressedfile.tar.gz

tar -xvf compressedfile.tar

or in one step

tar –xzvf compressedfile.tar.gz

Velocity: GUI Templates

This is a web template tool (found at http://velocity.apache.org).

1. Download the latest .zip file, velocity-X.X.X.zip.

2. Expand the .zip file in the appropriate directory.

3. Add the /lib .jar files to your classpath.
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A
abort method, 292, 295
about attribute, 399
abs operation, 538
absolute measurements, 495
abstract SWRL syntax, 235–237
acceptance myth, 22
access APIs, 142, 474
Active Ontology tab, 246
ad hoc ontology translation, 366
Add External JARs option, 39
add mathematical operation, 538
add method

combining models, 283
CustomGraph, 297
for D2RQ models, 499
Jena, 289
JenaSpatialIndex, 454, 459, 461
populating models, 280
SpatialGraph, 454, 456–457
TemporalGraph, 465
TemporalTripleIndex, 463

addBoxedPrimitiveValue method,
355

addDataFromFile method, 279
addDatafromOntology method, 280
addDataFromStatements method,

280

addDataFromURL method, 279
addDayTimeDurations operation,

543
addDayTimeDurationToDate

operation, 543
addDayTimeDurationToDateTime

operation, 543
addDayTimeDurationToTime

operation, 543
addedStatement method, 293
addition in SPARQL, 215
additionalFriends.owl file, 49
additionalFriendsSchema.owl file,

51
addLiteral method, 350
addReifiedStatements method,

281–282
addSameAs method, 281
addYearMonthDurations operation,

543
addYearMonthDurationToDate

operation, 543–544
addYearMonthDurationToDateTime

operation, 544
Aduna Cluster Maps, 515–516
aggregation

disparate data sources, 468–472
SPARQL, 228

585
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aggregation (continued)
UNION statements, 219

aggregators, 478–479
AI (artificial intelligence), 22
aligning ontologies, 361–362

with code, 381–382
constructs, 362–365
data source, 361–362
FriendTracker application,

366–372
future possibilities, 500–505
Hello Semantic Web World

application, 51–56
with OWL and SWRL, 372–376
with RDFS, 382–385
record linkage, 385–388
translations, 365–366
with XSLT, 376–381

Alignment API project, 500–505
AllegroGraph project, 155
alt predicate, 444
ambiguity in spatial information,

438–439
AND operations

SPARQL, 215
SWRL, 235

annotations
OWL ontologies, 106, 109, 526–527
unstructured data, 472–477

Ant builds, 430
ant-wsmx.jar file, 430
antecedents

SWRL, 234, 237
XML, 239–240

anyURI operation, 547–548
Apache Tomcat, 154
Apache Velocity project, 336
Aperature application, 405
application ontologies, 362
application programming interfaces

(APIs), 143, 147
applications

decoupling knowledge models
from, 173–174

sharing across, 174–175

apply-templates element, 319
aquireMemoryForData function,

276–278
argument1 keyword, 550
argument2 keyword, 550
arguments keyword, 550
artificial intelligence (AI), 22
ASC modifier, 210–211
ASK statements, 196, 225–226
associatedWith relationships, 15
assumptions, OWL, 103–104,

525–526
assumptions limiting, rules for, 233
asterisks (*) in SPARQL, 197
Atom keyword, 549–550
atoms

joining, 236
SWRL, 234, 549–550
XML, 240–243

attributes in RDFa, 396–402
automatic alignment, 500
avg function, 228
axioms

annotations, 109
OWL ontologies, 104

B
backward chaining

Jena rules, 257
OWL semantics, 148, 152–153

bad data management, 487
BASE keyword, 204–205
Basic Formal Ontology (BFO)

project, 177–178
Basic Geo Vocabulary, 444–446
Basic Logic Dialect (BLD), 231,

259–260
BasicAlign class, 501–502
Bayesian extension to OWL, 509
Bechhofer, Sean, 157
Beckett, Dave, 405
begin method, 292
Berners-Lee, Tim, 3, 24, 189, 337,

492–493
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best practices. See patterns and best
practices

BFO (Basic Formal Ontology)
project, 177–178

Big OWLIM store, 156
binary object serialization, 66–67
binary operations in SPARQL, 215,

561–562
binary predicates, 85
bindDigReasoner method, 288
binding

Jena rules, 257
reasoners to models, 575
SPARQL, 195–196
XML, 328–329

benefits and costs, 336–337
Java, 329–331
unmarshalling XML data into

Java, 331–333
Velocity template engine,

333–336
bindJenaInferenceReasoner method,

286
bindJenaRuleReasoner method, 287
bindPelletReasoner method, 288
bindReasoner function, 55
bindSchema method, 257
biological orders, 174–175
BioPortal repository, 181
blank nodes

RDF, 84–87, 520
RDFa, 402–403
SPARQL, 207

BLD (Basic Logic Dialect), 231,
259–260

blog posts on Facebook, 367
bodies

Jena, 257, 287
SWRL, 234

body keyword, 550
body keyword, 239, 550

Boley, Harold, 234
Boolean data types, 122
boolean operations, 537–538

booleanNot operation, 537
bottom properties, 116
Brachman, Ronald J., 25
browsers

navigation, 186–187
RDF, 146

brute-force approach in ontology
translation, 365

built-ins
rules for, 232–233
SWRL, 244–245, 471

builtin keyword, 550–551
Builtin keyword, 550
builtinAtom keyword, 243, 551
BuiltinAtom keyword, 551
ByteArrayOutputStream class, 298,

349

C
Calegari, Siliva, 509
Calendar class, 464
call-template element, 319
callback objects, 292
CamelCase variables, 193
cardinality restrictions, 130–134
carrot marks (∧)

SWRL, 236
Turtle, 81

Cartesian coordinate system, 453
ceiling operation, 538
chaining

backward, 152–153
forward, 148–153

chains, property, 118–119
change is difficult myth, 22
chat application, 308
child nodes in XML, 309
choose element, 319
class extensions, 110
classAtom keyword, 240–241, 251,

551
ClassAtom keyword, 551
classes, 16

creating, 38, 40, 47
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classes, (continued)
disjoint, 136–137
equivalence among, 139
Jena, 567–574
mapping, 253–256
ontology management, 476
OWL, 105, 110–111, 134–137,

527–528
RDFS, 101

ClassMap class, 340
classPredicate keyword, 551
clearAndCloseData method, 290
client applications, unstructured

data sources for, 476–477
close method, 284, 291, 295
closed containers, 521
closed world assumption, 103
Clustering Coefficient data, 517
code

aligning ontologies with, 381–382
code-editing tools, 36

collections in RDF, 521–523
colons (:) for blank nodes, 86
combineData method, 282–283
combining information, 301–302

in data development life cycle, 268
FriendTracker data sources,

307–308
Jabber, 346–351
Java objects, 352–359
Jena Semantic Web data, 282–283
relational databases, 337–346
representing information, 303–304
translating between

representations, 304–307
XML-based web services, 309–310

weather.gov XML feeds, 310–311
XML bindings and velocity,

328–337
XSL Transformations. See XSL

Transformations (XSLT)
commas (,)

Jena rules, 258
SPARQL, 198
Turtle, 79

comments
Jena rules, 258
N-Triples, 81
RDF/XML syntax, 75–76
Turtle, 79

commit method, 292
common languages in sharing

information, 65
communication, syntax and

semantics in, 65–67
compact URIs (CURIEs), 395,

398–401
Company class, 448
compareTo method, 462
comparison operations in SWRL,

537–538
compiling and execution tools, 36
complement-of operation, 125,

134–135
complexity, unnecessary, 23
CompositeProcess class, 429
composition in SWS, 425–426
concepts in Semantic Web, 3–4, 98
conceptual overlap in foundational

ontologies, 177
concurrency, 269, 293–295
condition-response frameworks,

260
conditions in RIF, 260
conjunctions and conjunctive rules

OWL, 148
QL profile, 161
RL profile, 162

SWRL, 234, 236, 471
connections in semantics, 5–6
consequents

SWRL, 234, 236
XML, 240

consistent URIs, 481–482
constraints, 11

OWL 2, 107
Swoogle, 191

CONSTRUCT queries, 216
distributed, 498
essentials, 222–224
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semantic pipes, 497
SPARQL, 196, 471

construction tools, 12
containers

RDF, 88–90, 521–523
value, 485–486

contains method, 295–296
contains operation, 540
contains relationships, 120
containsIgnoreCase operation,

540–541
containsModel method, 279
content attribute, 398
contractual agreements, 421
contradictory data, 18
convertOneEvent method, 381
convertOneVenue method,

381–382
convertStatus method, 384
Cool URIs Don’t Change

documentation, 480
Cool URIs for the Semantic Web

documentation, 480
coordinating semantic services,

478–479
Core, RIF, 259–260
correcting data, limitations on, 20
cos operation, 539
count function, 228
crawlers, 190
create method, 285
createCustomModel method, 295
createDefaultModel method, 83
createInfModel method, 286
createModel method, 277, 375–376
createModelForGraph method, 297,

465
createModelRDBMaker method, 279
createOntologyModel method, 44,

277, 279
createReifiedStatement method, 282
createResource method, 280, 284
createStatement method, 280
critical regions, 294

criticalRegionWrite method, 294
CURIEs (compact URIs), 395,

398–401
curly brackets ({})

SPARQL, 205–206, 215
XSLT, 317

CurrentObservation.java class, 331,
333–334

CustomGraph class, 295
customization, 269
cut method, 502
Cyc project, 178

D
D-entailment, 226–227
‘‘D1.2.3 Methods of Ontology

Evaluation’’ (Hartmann), 496
D2RQ tool, 338

benefits and costs, 345–346
database queries, 342–345
distributing queries, 498–500
installation guide, 577–578
instance wrapping in Jena model,

341–342
mappings, 339–341
for WordPress, 308, 338–346

DARPA Agent Markup Language
(DAML) program, 234

DARQ website, 500
data

dynamic and flexible, 18–19
Jena, 270

Data Description Language (DDL), 9
data failures, 17
data friction, 17
data modification in SPARQL, 228
data perspective, 20
data providers, 478
data source ontologies, 361–362
data sources in disparate data,

469–470
data types

OWL, 106, 122–125, 530–531
units of measurement, 484
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databases
data perspective in, 20
limitations, 15
relational, 66–67

dataRange keyword, 551
datarangeAtom keyword, 241, 552
DataRangeAtom keyword, 552
datatype attribute in RDFa, 401
datatype keyword in SWRL, 552
Datatypes and Built-Ins 1.0 (DTB),

RIF, 259–260
DataValue keyword, 552
datavaluedPropertyAtom keyword,

552
DatavaluedPropertyAtom keyword,

242, 552
date operation, 544
date operations in SWRL, 543–547
date spacing technique, 481
date type, 441
dateTime operation, 544
dateTime type, 441, 443
DateTimeDescription class, 442–443
DateTimeInterval class, 442
Davis, Ian, 395
dayTimeDuration operation, 544
DBConnection class, 279
DBpedia, 194, 200
dbpedia.org/sparql, 32
DDL (Data Description Language), 9
deallocating resources

in data development life cycle, 269
Semantic Web, 290–291

Dean, Mike, 234
debugging SPARQL queries,

201–202
Decentralized Information Group

(DIG)
Disco, 187–189
reasoners, 271, 286, 288

decidability in SWRL, 245, 250
decimal degrees, 444
decoupling knowledge models from

applications, 173–174

:def constraint, 191
default graphs in SPARQL, 202
degrees, decimal, 444
delete method, 296
dependence property in ontologies,

495
dependsOn method, 296
DERI Web Data Pipes, 497
DESC modifier, 210–211
DESCRIBE query form, 216

essentials, 224–225
SPARQL, 196–197

description logic
origin of, 24–25
OWL DL, 159

Description Logic Programs (DLPs),
234

descriptions
classes, 134–137
Semantic Web, 98

destinations in ontology mapping,
253

development environment
Jena, 276
setup, 36–38

dialects in RIF, 260
difference method, 283
differentIndividualsAtom keyword,

243, 553
DifferentIndividualsAtom keyword,

552
DIG (Decentralized Information

Group)
Disco, 187–189
reasoners, 271, 286, 288

DIGReasoner class, 567
DIGReasonerFactory class, 568
dirty data, 20
Disco browser, 187–189
discovering information, 185–186

navigating, 186–190
querying. See queries; SPARQL

(SPARQL Protocol and RDF
Query Language)
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searching, 190–192
discovery in Semantic Services, 424
disjoint classes, 136–137
disjoint properties, 117–118
disjunctions and disjunctive rules

OWL, 148
SWRL, 235

DISTINCT modifier
SELECT, 209–210
SPARQL, 199–200, 202

distributed knowledge
OWL, 102–104
RDFa for, 395

distributed queries, 497–500
divide operation, 539
divideDayTimeDuration operation,

544
divideYearMonthDurations

operation, 545
division in SPARQL, 215
DL-safe rules, 245–253
DLPs (Description Logic Programs),

234
Document Object Model (DOM)

for Upcoming.org, 308
XML feeds, 358–359

documents
Jena, 276
RIF, 260

DOLCE ontology, 179
dollar signs ($) in SPARQL, 194
domain-independent properties, 495
domain knowledge models, data

for, 470–471
domain ontologies, 362, 468
domains

OWL properties, 114–115
sharing across, 174–175
translations, 469

dots (.)
SPARQL, 198
Turtle, 79, 349
XPath expressions, 313

double quotes (’’) in Turtle, 80

Drucker, Peter F., 421
drunkard’s walk, 186
Dublin Core Metadata Initiative, 179
duplicate statements, 74
duration operations in SWRL,

543–547
DurationDescription class, 441–442
dynamic data, 18–19

E
EBNF (Extended Backus-Naur

Form) notations, 235–236
Eclipse IDE, 44

code-editing tools, 36–37
installation guide, 578

edges in RDF, 71–72
Edison, Thomas, 231
editors

code, 36–37
Protege, 47–50, 250

effective predicate, 449
Einstein, Albert, 437
#else directive, 335
email addresses, 257–258
empty graph patterns, 206
empty operation, 548
#end directive, 335
endpoints

entailment, 227
SPARQL, 192, 202, 404–408,

499–500
UNION statements, 219

endsWith operation, 541
entailments

derivation, 143–144
forward chaining, 148–149
SPARQL, 226–227

enterCriticalSection method, 294
enterprise service bus (ESB), 422
Entity-Relational (ER) models, 338
enumerating class membership, 134
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equal operation, 537
equals method, 283
equals operator (=) in reflexive

properties, 120
equivalence in OWL, 137–139
ER (Entity-Relational) models, 338
eRDF (embedded RDF), 392–395
error handling in Semantic Services,

425
ESB (enterprise service bus), 422
ETL (Extract, Transform, and Load)

approach, 20
Euler, Leonhard, 24
evaluate method, 334–335
events

Facebook, 367
generating, 292–293
Jena, 270
Semantic Web, 269

ex: prefix, 108
ex:hasOwner property, 122, 129
ex:NegativePropertyAssertion class,

126
ex:registeredName property, 128
exceptions in Java, 275
exclamation points (!) in RDF/XML

comments, 75–76
execConstruct method, 342
execSelect method, 46
existential variables, 84
explicit facts, 143
explicit ontology translation,

365–366
exporting

in data development life cycle, 269
Jena models, 290, 575

exposing techniques
Jabber with RDF writers, 346–351
Java objects using Reflection,

352–359
relational databases as RDF,

337–346
XML-based web services as RDF,

309–310

weather.gov XML feeds, 310–311
XML bindings and velocity,

328–337
XSL Transformations. See XSL

Transformations (XSLT)
Extended Backus-Naur Form

(EBNF) notations, 235–236
eXtended MetaData Registry

(XMDR), 492
extending ontologies, 181–182
Extensible Markup Language. See

XML (Extensible Markup
Language)

Extensible Messaging and Presence
Protocol (XMPP), 308, 408–409

Extensible Stylesheet Language
Transformations. See XSL
Transformations (XSLT)

external reasoners, 271, 286, 288
Extract, Transform, and Load (ETL)

approach, 20
extractFriends method, 376
extractPosts method, 381

F
F-Logic rule language, 259
Facebook, 26, 366–367

foundational ontologies, 176
FriendTracker. See FriendTracker

application
XSLT with, 322–326

FacebookFriendSource class, 369,
375

facet restrictions, 122–123, 530
FaCT++ reasoning engine, 157
Factory methods, 292
facts, 143
Falcons search engine, 190
Faviki project, 473
Fensel, D., 513
fidelity in data translation, 305
FileOutputStream class, 290, 349
files statements, 8–9
FILTER modifier, 213, 215
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finally clause, 294
find method, 296
findWithin method, 454, 460–461
Firefox Semantic Radar, 30–32
first operation, 548
first-order logic in OWL DL, 159
Fisher, Matt, 187–189
fixing data, limitations of, 20
FLD (Framework for Logic Dialects),

259–260
flexibility of semantics, 20–21
flexible data, 18–19
Flickcurl application, 405
Flickr.com, 26
floor operation, 539
flow of data, initiating, 472
FOAF-a-Matic site, 41–44, 46,

180
FOAF ontology, 41–43
FOAF project, 29–30, 180
FoafOwl class, 272–273
for-each element, 319
foreign keys in relational

databases, 9
formatting instructions, 4
forward chaining

Jena rules, 257
OWL semantics, 148–153

foundational ontologies, 175–183
4Suite framework, 154
Framework for Logic Dialects (FLD),

259–260
free discovery, 185
Friend class, 246, 373
Friend of a Friend project, 29–30
friend statements, 53
FriendTracker application, 298–299

aligning ontologies, 366–372
with code, 381–382
with OWL and SWRL, 372–376
with RDFS, 382–385
with XSLT, 376–381

data sources, 302, 307–308, 322
in RDF-Gravity, 514–515

in RDFa, 411–417
in Welkin, 515

FROM clause, 202–203
FROM NAMED clause, 202, 205–207
Fulghum, Robert, 389
functional properties, 120–121
future possibilities, 489–490

integration, 497–505
ontologies, 491–496
reasoning, 506–513
visualization, 514–517

fuzzy ontologies, 509
‘‘Fuzzy Ontology-Approach to

Improve Semantic Information
Retrieval’’ (Calegari and
Sanchez), 509

Fuzzzy project, 473
fxml namespace, 324

G
Galilei, Galileo, 185
‘‘garbage in, garbage out’’

phenomenon, 18
GChat application, 308
generalized rules in SWRL, 251
generate mapping class, 339
GeoRSS ontology, 180, 443–444
get method in Jena, 286
getBulkUpdateHandler method, 296
getCapabilities method, 296
getConnection method, 278
getDataStatus method, 291
getEntries method, 348
getEventManager method, 296
getFriends method, 376
getName method, 350
getOWLReasoner method, 55
getPrefixMapping method, 296
getReasoner method, 289
getReifier method, 296
getSearchEnvelope method,

459–460
getSource method, 284
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getSpatialSubgraph method, 454,
456–457

getStatisticsHandler method, 296
getTemporalSubgraph method,

464–465
getter methods in Reflection,

354–355
getTime method, 462
getTransactionHandler method, 296
getTriple method, 462–463
getTriples method, 463–464
getURI method, 272–273
getUser method, 350
getX method, 458
getY method, 458
Gleaning Resource Descriptions

from Dialects of Languages
(GRDDL), 493

Global Positioning System (GPS),
443

gmail.com email friends, 257–258
Godel, Escher, Bach: An Eternal Golden

Braid (Hofstadter), 23
goodness measurements, 495
Google chat application, 308
Google maps, 26
GPS (Global Positioning System),

443
grammar rules, 5
granularity in spatial information,

439–440
Graph interface, 568
graph stores, 142, 145–146
graph theory, 24
graphs

instance, 43–44
Jena, 271
queries, 193–194
RDF, 69–72
SPARQL, 202–203
statements, 7–8

GRDDL (Gleaning Resource
Descriptions from Dialects of
Languages), 493

greater than (>) operator
irreflexive property, 120
ORDER BY, 210
RDF/XML comments, 75–76
Turtle, 79

greaterThan operation, 537
greaterThanOrEqual operation,

537–538
Grosof, Benjamin, 234
gzipped files, 583

H
<H1> tags, 4
Hartmann, Jens, 496
has child—has parent relationships,

116
has part—is a part of relationships,

116
hasComponent property, 133
hash symbols (#)

Jena rules, 258
Turtle, 79

hasX method, 458
hasY method, 458
Hawthorne, Nathaniel, 301
hCalendar microformat, 392
hCard microformat, 391–392
head keyword, 553
head keyword, 240, 553

headers, ontology, 105, 108
heads in SWRL, 234
Hello Semantic Web World tour, 35

application programming, 38–59
development environment setup,

36–38
HelloSemanticWeb class, 38, 44
Hendler, James, 24
Hermit reasoning engine, 157
hints, semantic, 5
Hofstadter, Douglas R., 23
Horn clauses in SWRL, 234–235
Horrocks, Ian, 157, 234
href attribute, 399
hReview microformat, 392
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human acceptance myth, 22
human readability, 514–517
hybrid reasoners, 148
hype, 22–23

I
IDBConnection interface, 568
IDE (Integrated Development

Environment), 36–37
identifies—is identified by

relationships, 116
identity property for ontologies, 495
#if directive, 335
if element, 319
if-then statements, 234–235
ImageType.java class, 331
imp keyword, 239, 553
Imp keyword, 553
implications

SWRL, 234
XML, 239

implicit facts, 143
importModel method, 298
In Degree data in Welkin, 517
inclusiveness of Semantic Web, 19
inDateTime predicate, 442
indexes

spatial, 452, 460–461
WWW, 95

Individual class, 47, 281
Individual keyword, 553
individualPropertyAtom keyword,

241–242, 554
IndividualPropertyAtom keyword,

553
individuals

equivalence among, 138
OWL, 105, 110–111, 527

inequalities in SPARQL, 215
inference

OWL, 163–172
in Semantic Web, 18
SWRL, 247–252

InferenceExample class, 166–169

Inferred Axiom tab, 246
InfModel interface, 568
information navigation, 18
inherently unique artifacts, 17
initialize method, 375–376
inputFileFormat method, 83
InputStream class, 279, 322
InputStreamReader class, 334
installation reference guide,

577
D2RQ, 577–578
Eclipse IDE, 578
Java classpath, 578–580
JAXB-RI, 580–581
JDBC driver for MySQL, 582
Jena Semantic Web framework,

580–581
Pellet reasoner, 582
Protege ontology editor, 582
tar/gzipped files, 583
Velocity, 583

instance graphs, 43–44
instance-of relationships, 112
instances, 15–16

creating, 47–48
description, 12
ontology management,

476
vs. subclasses, 112–113
wrapping, 341–342

instants, 441
integerDivide operation, 539
Integrated Development

Environment (IDE), 36–37
integration iceberg, 17
integration possibilities, 497

alignment, 500–505
distributed queries, 498–500
semantic pipes, 497

internal reasoners, 271, 286
Internationalized Resource

Identifiers (IRIs), 11
graphs, 204
resources, 69–70, 519
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interrogation
in data development life cycle,

268–269
Semantic Web data, 283–285
tools, 12

intersection method, 283
intersection-of operation, 125,

134–135
intersections in SWRL, 234
intervals, 441–442
intra-dialect compatibility, 260
Introduction to Description Logics

(Nardi and Brachman), 25
inverse properties, 116–117,

120–121
invocation in Semantic Services,

424–425
inXSDDateTime predicate, 443
IOException class, 279, 290
IRIs (Internationalized Resource

Identifiers), 11
graphs, 204
resources, 69–70, 519

irreflexive properties, 120
isBestFriendOd property, 246–247
isClean method, 289
isClosed method, 296
isEmpty method, 291, 297
isIsomorphicWith method, 283, 297
iterators, 282

J
Jabber, 308

Facebook, 367
foundational ontologies, 176
RDF writers for, 346–351

JabberFriendSource class, 369
JabberToRdf class, 346
.jar files, 272, 276, 288
Java

bindings for XML data, 329–331
classpath installation, 578–580
exceptions, 275
Reflection API, 352–359

unmarshalling XML data into,
331–333

Java Build Path option, 39
Java Database Connectivity (JDBC),

66, 582
Java Runtime Environment (JRE), 38
Java Software Development Kit

(SDK), 36
Java XML Bindings (JAXB), 310,

328–330
Javadoc RDFizer application, 405
JavaObjectRdfSerializer class, 352,

356
JavaObjectsToRdf class, 352
JavaServer Pages Standard Tag

Library (JSTL), 328
jax-ws.jar file, 430
JAXB (Java XML Bindings), 310,

328–330
JAXB Reference Implementation

Project, 329–330
JAXB-RI installation guide,

580–581
JAXBContext class, 333
JDBC (Java Database Connectivity),

66, 582
Jena framework, 36–37, 153–155,

269, 567
classes, 567–574
combining data, 282–283
concepts, 269–272
concurrency, 293–295
customizing, 295–297
D2RQ conversions, 577–578
deallocating resources,

290–291
development environment, 276
events, 292–293
exporting data, 290, 575
FriendTracker application,

298–299
installation guide, 580–581
interrogating data, 283–285
knowledgebases, 276–279
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libraries, 39
managing data, 291–298
populating, 279–282
programming with, 273–275,

574–575
reasoning across data, 285–290
rules, 257–258
serialization, 297–298
spatiotemporal data. See

spatiotemporal data
wrapping instances in, 341–342

Jena Graph interface, 295
Jena Javadocs, 276, 280
Jena property, 280
jena.rdfcopy program, 83
JenaExploration class, 274–275
JenaListener class, 292–293
JenaSource class, 368–369, 375–376,

384
JenaSpatialIndex class, 454, 457–461
Jess rule language, 259
JMX MBeans (Java Management

Extensions Management Beans),
430

JNI interface, 288
Joseki application, 405–408
JRE (Java Runtime Environment), 38
JSTL (JavaServer Pages Standard

Tag Library), 328
JTS Topology Suite (JTS), 452
Juster, Norton, 93

K
KAON2 reasoning engine, 157
keys

OWL, 121–122, 531–532
relational databases, 9

keywords
limitations, 5–6
RDFa, 396–397
searching, 185–186
Semantic Web, 8
SPARQL, 563–565
SWRL, 549–554

Klein, Michel, 493
knowledge domain integration,

97–98
knowledge models

combined, 303–304
decoupling from applications,

173–174
knowledge networks, 27–28
knowledge representation, 23
knowledgebases, 142–144

disparate data, 469
Jena, 276–279
performance, 157–158
statements, 8–9
storing information in, 472
truth maintenance in, 150–151

L
Language-Integrated Query (LINQ)

package, 155
languages

description, 11
RDFa support, 403–404
relational databases, 9
rules, 233–234, 259
in semantics, 5, 8
in sharing information, 65

Large Knowledge Collider (LarKC)
reasoner, 513–514

Lassila, Ora, 24
lat predicate, 444
leaveCriticalSection method, 294
Lehigh University Benchmark

(LUBM), 158
length operation, 548
less than(<) operator

irreflexive property, 120
ORDER BY, 210
RDF/XML comments, 75–76
Turtle, 79

lessThan operation, 538
lessThanOrEqual operation,

538
lib directory, 39
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libraries
external, 39–41
spatial, 452

Libraries window, 39
liftingSchemaMapping attribute, 433
LIMIT modifier

SELECT, 211–213
SPARQL, 202

limiting assumptions, rules for,
233

line breaks in Turtle, 80
link semantics, 7
linkage, record, 385–388
Linked Data project, 492–493
linking data, 87
LINQ (Language-Integrated Query)

package, 155
LinqToRDF framework, 155
listConcat operation, 548
listIntersection operation, 549
listNameSpaces method, 292
listProperties method, 284
lists

RDF, 90–91
SWRL, 548–549

listSubtraction operation, 549
literals

N-Triples, 81–82
RDF, 69–70, 519
RDF/XML syntax, 77
Turtle, 80–81, 350

Lloyd-Topor transformations,
235

load time in performance, 157
local reasoners, 271
Location class, 457–461
location in Facebook, 373
locks in Jena, 293–294
logical expressions, 25
logical operations in SWRL, 215,

235, 471
logspace in OWL QL, 161
long predicate, 444
Longwell tool, 517

lowercase operation, 541
loweringSchemaMapping attribute,

433
LUBM (Lehigh University

Benchmark), 158

M
machine automation support, 423
machine readability, 16–17
map prefix, 340
mapping

D2RQ, 339–341
ontologies, 252–257, 362–363

mapping providers, 478–479
MappingGenerator method, 499
mash-ups, 497
matches operation, 541
mathematical operations

SPARQL, 215
SWRL, 471, 538–540

max function, 228
McLuhan, Marshall, 265
meaning, 4–5
measurement units

properties and datatypes, 484
specifying, 483–484
statement reification, 485
value containers, 485–486

MEBN (Multi-Entity Bayesian
Networks), 509

mediation, ontological, 233, 252–257
member operation, 549
memory-based OWL model, 276
merging

statements, 73
trees, 72

<META> tag, 5
metadata

in sharing information, 67–68
Snoggle, 254

metamodeling, 108
Metcalf’s Law, 490
meteorological and hydrological

data
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XML feeds
overview, 310–311
RDF generators for, 356–358

XSL Transformations. See XSL
Transformations (XSLT)

metrics
knowledgebase performance, 157
ontologies, 495–496

microformats, 30–32, 390–392
min function, 228
mindswap group, 429
minus signs (−) in RDF/XML

comments, 75–76
mod operation, 539
Model class, 276
Model interface, 568–569
ModelFactory class, 569
modeling information, 61

RDF. See Resource Description
Framework (RDF)

in software, 62–66
ModelMaker class, 277
ModelMaker interface, 569–570
monitoring Semantic Services, 425
Moore’s Law, 490
motivating factors for Semantic

Web, 94–98
Mulgara store, 156
Multi-Entity Bayesian Networks

(MEBN), 509
multiple threads in concurrency,

293–295
multiplication in SPARQL, 215
multiply operation, 539
multiplyDayTimeDurations

operation, 545
multiplyYearMonthDuration

operation, 545
Murrow, Edward R., 361
myFriends function, 46
mySelf function, 45
MySpace.com, 26
myths about Semantic Web, 21–22

N
n-ary relationships, 486–487
N-Triples, 81–82, 290, 520
N3 format, 290
NAF (negation as failure) technique,

233
named classes in SWRL rules, 251
named graphs in SPARQL, 202,

204–207
names and namespaces

challenges, 17
Jena, 272
no unique names assumption, 104,

138, 480, 526
OWL, 101
RDFS, 100
resources, 69
SWRL, 536–537
URI, 11
XML, 76–77

Nardi, Daniele, 25
National Oceanic and Atmospheric

Administration, 310
National Weather Service

XML feeds
overview, 310–311
RDF generators for, 356–358

XSL Transformations. See XSL
Transformations (XSLT)

navigation, 185–186
information, 18–19
Jena, 283–285
Semantic Web, 186–190

negation as failure (NAF) technique,
233

negation rules, 148
negative property assertions, 126
negative risk in change, 22
negotiation in Semantic Services,

425
newInstance method, 464
NIH (Not Invented Here) myth,

22
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no unique names assumption, 104,
138, 480, 526

nodes
blank, 207, 402–403
graphs, 24
RDF, 69–71
semantic services, 478–479
XML, 309–310

noisy data, 20
normalizeSpace operation, 541
Not Invented Here (NIH) myth, 22
NOT operations in SPARQL, 215
notEqual operation, 538
notifyEvent method, 293
numeric data types in OWL, 122

O
OAEI (Ontology Alignment

Evaluation Initiative), 500
object-oriented programming

(OOP), 111
ObjectFactory.java class, 331
ObjectListener class, 292–293,

570–571
objects

Java, 352–359
Jena, 270
object-oriented solutions, 15–16, 62
RDF, 519
serialized, 66–67
in statements, 10–11, 68
Turtle, 79

occursAt predicate, 372
ODBC (Open Database

Connectivity), 66
OFFSET modifier, 211–213
one data model myth, 21
one view myth, 21–22
one-way functions in data

translation, 306
OnlineStatus enumeration, 372
OntClass interface, 281, 571
OntModel interface, 571
OntModelSpec class, 570

OntoClean, 495–496
ontological mediation, 233, 252–257
ontologies, 6, 172–173

aligning. See aligning ontologies
choosing, 183
constructs, 363–365
data source, 361–362
description, 11
editing tools, 36–37
FOAF, 41–43
future possibilities, 491–496
GeoRSS, 180, 443–444
Jena, 271
linked data, 492–493
management, 475–477
metrics, 495–496
OWL. See OWL Web Ontology

Language
PML, 510–513
RDF, 100
real world modeling, 172–173

decoupling knowledge models
from applications, 173–174

foundational, 175–183
sharing across domain and

application boundaries,
174–175

reasoners. See reasoners
repositories and registries, 491–492
reusing and extending, 181–182
statements in, 8
versioning, 493–494
WSMO, 422, 426, 429–432

Ontology Alignment Evaluation
Initiative (OAEI), 500

Ontology interface, 571–572
ontology-mapping tools, 252
ontology ranks, 190
OntoMetric methodology, 496
OntProperty interface, 572
OntResource interface, 572
OOP (object-oriented

programming), 111
open containers, 521
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Open Database Connectivity
(ODBC), 66

Open Ontology Repository (OOR)
project, 182, 492

open world assumption, 103–104,
525

OpenCyc project, 178
OpenLink Virtuoso tool, 156, 338
openModel method, 279
OPTIONAL modifier, 215–219
OR operations

SPARQL, 215
SWRL, 235

Oracle 11g store, 156
ORDER BY modifier, 210–211
ordering statements, 74
organizational constructs in RDF,

88–91
otherwise element, 319
Out Degree data in Welkin, 517
outputFileFormat method, 83
OutputStream class, 322
overhead

backward chaining, 153
forward chaining, 150

owl namespace, 101, 526
owl:AllDifferent property, 138, 527
owl:AllDisjointClasses property,

137, 528
owl:AllDisjointProperties property,

118, 529
owl:allValuesFrom property,

127–128, 532
owl:AnnotationProperty property,

109, 526
owl:assertionProperty property, 530
owl:AsymmetricProperty property,

119–120, 529
owl:backwardCompatibleWith

property, 108, 494, 527
owl:bottomDataProperty property,

116
owl:bottomObjectProperty

property, 116

owl:cardinality property, 130, 532
owl:Class resource, 110
owl:complementOf operation,

134–135, 528
owl:datatypeComplementOf

property, 124, 531
owl:DatatypeProperty class,

113–114, 528
owl:deprecated property, 526
owl:DeprecatedClass property, 526
owl:DeprecatedProperty property,

526
owl:differentFrom property, 137, 527
owl:disjointPropertyWith property,

117
owl:disjointUnionOf property, 137,

528
owl:disjointWith property, 136, 528
owl:distinctMembers property, 138
owl:equivalentClass property, 127,

139, 363, 373, 383, 470, 527, 531
owl:equivalentProperty property,

139, 363, 373, 383, 470, 528
owl:FunctionalProperty property,

119–120, 529
owl:hasKey property, 121, 385–386,

532
owl:hasValue property, 127–129,

532
owl:imports property, 108
owl:incompatibleWith property,

108, 494, 527
owl:intersectionOf property,

124–125, 134–135, 528, 531
owl:InverseFunctionalProperty

property, 119–121, 529
owl:inverseOf property, 116–117,

127, 363, 529
owl:IrreflexiveProperty property,

119–120, 529
owl:maxCardinality property, 130,

532
owl:maxQualifiedCardinality

property, 132, 532
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owl:members property, 118
owl:minCardinality property, 130,

532
owl:minQualifiedCardinality

property, 132, 532
owl:NegativePropertyAssertion

property, 529
owl:Nothing class, 113
owl:Nothing property, 528
owl:ObjectProperty class, 113–114,

528
owl:onClass property, 133, 532
owl:onDataRange property, 133
owl:onDatatype property, 530
owl:oneOf property, 528, 531
owl:onProperty property, 127,

531–532
owl:priorVersion property, 108, 494,

527
owl:Property property, 532
owl:propertyChain property, 529
owl:propertyDisjointWith property,

117, 529
owl:qualifiedCardinality property,

132, 532
owl:ReflexiveProperty property,

119–120, 529
owl:Restriction construct, 126, 531
owl:sameAs property, 137–138, 363,

387, 527
owl:SelfProperty property, 532
owl:SelfRestriction class, 130
owl:someValuesFrom property,

127–128, 532
owl:sourceIndividual property, 529
owl:SymmetricProperty property,

119–120, 529
owl:targetIndividual property, 126,

530
owl:targetValue property, 126, 530
owl:Thing class, 113–114, 528
OWL-Time ontology, 180, 441, 444,

449
owl:topDataProperty property, 116

owl:topObjectProperty property, 116
owl:TransitiveProperty property,

119–120, 529
owl:unionOf property, 124, 134–135,

528, 531
owl:versionInfo property, 109, 494
OWL Web Ontology Language, 61,

100–102, 154–156
aligning, 372–376
annotations, 106, 109, 526–527
assumptions, 103–104, 525–526
basic classification, 110–113
classes, 105, 110–111, 134–137,

527–528
construct support, 363–365
data types, 106, 122–125, 530–531
distributed knowledge, 102–104
for domain knowledge models, 470
elements, 104–105, 107
equivalence in, 137–139
headers, 105, 108
individuals, 105, 110–111, 527
inference, 163–172
keys, 121–122, 531–532
knowledgebases, 276
memory-based model, 276–279
OWL 2 typing, 107–108
profiles, 158–159

OWL EL, 160–161
OWL Full and OWL DL, 159
OWL QL, 161–162
OWL RL, 162
OWL-S, 427–429

properties, 105–106, 113–114,
528–530

annotations, 526–527
chains, 118–119
disjoint, 117–118
domain and range, 114–115
functional, 120–121
inverse, 116–117, 120–121
negative property assertions, 126
rdfs:subPropertyOf, 115–116
restrictions, 127–134
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symmetric, reflexive, and
transitive, 119–120

top and bottom, 116
restrictions, 122–123, 531
semantics, 147–148

backward chaining, 152–153
forward chaining, 148–153

owl:withRestrictions property, 531
OWL XML Presentation Syntax, 237
OWLIM store, 156
owlx namespace, 537

P
package-tracking application, 445
page rankings in search engines, 95
Parliament store, 156
part-of-a-whole relationships, 120
partitioning OWL ontologies,

104–105
Patel-Schneider, Peter F., 234
patterns and best practices, 467–468

aggregating data sources, 468–472
annotating unstructured data,

472–477
bad data, 487
coordinating semantic services,

478–479
n-ary relationships, 486–487
units of measurement, 483–486
URIs, 480–483

Pellet reasoner, 36–38, 55
description, 157
installation guide, 582
Jena, 288
libraries, 39
SWRL, 246, 250

PelletReasonerFactory class, 288
People class, 281
performance of knowledgebases,

157–158
performConversionFromUpcoming

OntToFriendTrackerOnt method,
381

performMappingQuery method, 384

periods (.)
SPARQL, 198
Turtle, 79, 349
XPath expressions, 313

persistence mechanism in
annotation management, 474

Personal Information Managers
(PIMs), 38

pipes, 497
PML (Proof Markup Language), 511
PML-J (pmlj prefix) ontology,

511–512
PML-P (pmlp prefix) ontology,

511–512
PML Primer, 511
PML-T (pmlt prefix) ontology, 511
Point class, 444–446
points, statements as, 73–74
polynomial-time computations

OWL EL, 160
OWL QL, 161

PopularFriend class, 246–248
populateFOAFFriends function, 44
populateFOAFSchema function, 51
populateNewFriends function, 49
populateNewFriendsSchema

function, 51
population

in data development life cycle, 268
Jena models, 279–282, 575

Position class, 448
positive risk in change, 22
pound signs (#)

Jena rules, 258
Turtle, 79

pow operation, 539
PR-OWL reasoner, 509–510
PRD (Production Rule Dialect), 231,

259–260
PRecEvaluator class, 505–506
predicates. See also properties

Jena, 270
RDF, 71–72, 85, 88, 519
in statements, 10–11, 68
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predicates. See also properties
(continued)

Turtle, 79
XPath expressions, 314–315

PREFIX keyword, 197
prefixes

for blank nodes, 86
Jena rules, 258
SPARQL, 197
Turtle, 79–80

PrefixMapping class, 292
printIndividual method, 167
probabilistic reasoning, 507–510
problem framing

spatial queries, 453–454
transaction time-bounded queries,

461
Process class, 428
processMethod method, 354
processObject method, 352–353, 355
processors

query, 142
SPARQL, 192

Production Rule Dialect (PRD), 231,
259–260

Profile class, 428
programming and programming

frameworks, 265–266
components, 10–13
data dynamics and flexibility,

18–19
Jena. See Jena framework
key areas, 266–269
semantic data, 14–16
sharing data, 16–17
Web data-centric perspective,

13–14
projects, creating, 38–39
Prolog language, 259
Pronto reasoner, 508–509
Proof Markup Language (PML), 511
properties. See also predicates

creating, 48
equivalence among, 139

measurement units, 484
ontology management, 476
OWL, 105–106, 113–114, 528–530

annotations, 526–527
chaining, 118–119, 232
disjoint, 117–118
domain and range, 114–115
functional, 120–121
inverse, 116–117, 120–121
negative property assertions, 126
rdfs:subPropertyOf, 115–116
restrictions, 127–134, 531
symmetric, reflexive, and

transitive, 119–120
top and bottom, 116

RDF, 71–72, 519
RDFS, 101
SWRL, 236

Properties window, 39
property attribute, 399–400
PropertyBridge class, 340–341
propertyPredicate keyword, 554
Protege Ontology Editor, 36–37

FOAF extensions, 245–246
Hello World application, 47–50
installation guide, 582
OntoClean implementation,

495–496
SWRL editor, 250

provenance information in data
translation, 305–306

providers, 478–479
PublishRDFa class, 412–414

Q
quad trees, 452
Quadtree class, 454
qualified cardinality restrictions,

132–134
queries, 147, 186

D2RQ database, 342–345
distributed, 498–500
duration metric, 157
Jena, 270–271, 283–285, 575
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Semantic Web, 192
SPARQL. See SPARQL (SPARQL

Protocol and RDF Query
Language)

spatial data, 453–461
transaction time-bounded, 461–465

Query class, 570
Query Language, 147
query method, 461
query processors, 142
query solutions, 200
queryData method, 284–285
QueryExecution interface, 285, 342,

570
QueryExecutionFactory method, 46
queryHandler method, 297
QueryReader class, 342
QuerySolution interface, 570
question marks (?)

Jena rules variables, 258
SPARQL, 194
SWRL variables, 236

R
RacerPro reasoning engine, 157
Radiant editor, 435
range properties in OWL, 114–115
ranks

ontology, 190
in search engines, 95

RAP RDP API framework, 155
RDBs (relational databases), 66–67

exposing, 337
schema, 9
sharing information, 98

RDF. See Resource Description
Framework (RDF)

rdf prefix, 100–101, 526
rdf:about tag, 76
rdf:Alt container, 88, 521–522
RDF and OWL Compatibility

(RDF+OWL) document, 260
rdf:Bag container, 88, 521

RDF Data Query Language (RDQL),
192

rdf:datatype tag, 77
rdf:Description tag, 75–76, 78
rdf:first predicate, 91
RDF-Gravity tool, 514–515
rdf:li predicate, 89–90
rdf:List container, 90–91, 521, 523
rdf:nil predicate, 91
rdf:object predicate, 88, 449, 520
rdf:predicate predicate, 88, 449, 520
rdf:RDF tag, 75, 315
rdf:resource tag, 76, 317
rdf:rest predicate, 91
RDF Schema (RDFS), 61

aligning ontologies with, 382–385
inference, 170–171
overview, 100–102

rdf:Seq container, 88–89, 521–523
rdf:Statement type, 88, 520
rdf:subject predicate, 88, 449, 520
rdf:type property, 110, 527
RDF Validator, 78
RDF/XML format, 74–78, 290
RDF/XML-ABBREV format, 290
rdf:XMLLiteral type, 122
RDF123 application, 405
RDFa, 30–32, 395

attributes, 396–402
blank nodes, 402–403
FriendTracker in, 411–417
language support, 403–404

RDFizers, 404–405
RDFNode interface, 285, 572
RDFS (RDF Schema), 61

aligning ontologies with, 382–385
inference, 170–171
overview, 100–102

rdfs prefix, 100–101, 526
rdfs:comment property, 106, 109
rdfs:comments property, 526
rdfs:Datatype property, 122, 530
rdfs:domain property, 114, 528
rdfs:isDefinedBy property, 109, 526
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rdfs:label property, 106, 109, 350, 526
rdfs:range property, 114–115, 528
rdfs:seeAlso property, 109, 526
rdfs:subClassOf property, 111–112,

127, 142, 148, 363–365, 383, 471,
527, 531

rdfs:subPropertyOf property,
115–116, 118, 127, 363, 383, 528

RDFSerializer class, 82–83
RDQL (RDF Data Query Language),

192
read method, 83, 279
readability

human, 514–517
machine, 16–17

real world knowledge modeling, 141
common frameworks and

components, 153–157
knowledgebase performance,

157–158
ontologies, 172–173

decoupling knowledge models
from applications, 173–174

foundational, 175–183
sharing across domain and

application boundaries,
174–175

OWL
inference, 163–172
profiles, 158–162
semantics, 147–153

RDF
retrieving information, 146–147,

156
storing information, 144–146,

155–156
Semantic Web

components, 141–143
frameworks, 143–144

realizing OWL semantics, 147–153
Really Simple Syndication (RSS)

feeds, 443
Reasoner interface, 572
ReasonerRegistry class, 286–287

reasoners, 12, 36–38, 142
alignment statements for, 55
binding to models, 575
Jena, 257, 270–271, 286–288
list of, 156–157
OWL, 147
SWRL, 246, 250

reasoning
across data, 285–290
in data development life cycle, 268
future possibilities, 506–513
LarKC, 513–514
probabilistic, 507–510
Rule Interchange Format,

506–507
trust, 510–513

record linkage, 385–388
Redland framework, 155
REDUCED modifier

SELECT, 210
SPARQL, 202

Reflection API, 352–359
reflexive properties, 119–120
regex method, 57, 258, 287
REGEX operations, 215
register method, 293
registries, 491–492
reification

Jena, 270
measurement units, 485
RDF, 88, 520–521
temporal information, 449

rel attribute, 396
Rel-License microformat, 392
relational databases (RDBs), 66–67

exposing, 337
schema, 9
sharing information, 98

relational modeling approach, 62,
145

relationships
graphs, 24
importance, 15–16
inverse, 116–117
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n-ary, 486–487
in semantics, 5–8

relative measurements, 495
relevance rankings by search

engines, 95
remote reasoners, 271
removeAll method, 290
removeAllReifications method, 291
removeReification method, 291
Reorganization class, 448–449
replace operation, 541
reportsTo predicate, 448
repositories, 181, 491–492
representations

mechanisms, 303–304
translating between, 304–307

reserved keywords in RDFa,
396–398

resolution in spatial information,
439–440

resolvable URIs, 483
resolveURI operation, 548
resource attribute, 400–401
Resource Description Framework

(RDF), 61
binary predicates, 85
browsers, 187
containers and collections, 88–90,

521–523
disparate data, 469–470
edges, 71–72
exchanging information with, 72
for Jabber, 346–351
lists, 90–91
nodes, 69–71, 84–87, 520
overview, 68–69, 519–520
reification, 88, 520–521
relational databases as, 337–346
retrieving information, 146–147,

156
semantics in, 98–102
serializations. See serializations
statements as points, 73–74

storing information, 142, 144–146,
155–156

SWRL example, 243–244, 533–536
transformational tools, 404–405
triples, 72, 144–145, 187
Upcoming.org XML feeds, 358–359
Velocity for, 336
vocabularies, 99–102
weather.gov XML feeds, 356–358
XML-based web services, 309–310

weather.gov XML feeds, 310–311
XML bindings and velocity,

328–337
XSL Transformations. See XSL

Transformations (XSLT)
Resource interface, 573
resources

deallocating, 290–291
RDF, 88, 145, 519–520

nodes, 69–71
RDF/XML syntax, 76–77

responses in RIF, 260
rest operation, 549
RESTful API, 319, 322
restrictions in OWL, 122–123, 531

cardinality, 130–134
value, 127–131

results
Jena, 270–271
SPARQL, 194

ResultSet interface, 285, 573
retrieveFriends method, 346–348
retrieving information in RDF,

146–147, 156
reusing ontologies, 181–182
rev attribute, 398
reversing data translation, 306
Riazanov, Alexandre, 157
Richardson, John M., Jr., 489
RIF (Rule Interchange Format),

259–260, 506–507
RIF Working Group, 234, 259–260
rigidity property, 495
risk in change, 22
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rlab keyword, 239, 554
roadblocks, 19–21
Roster class, 348
round operation, 540
roundHalfToEven operation, 540
RSS (Really Simple Syndication)

feeds, 443
rule engines, 57–58
Rule Interchange Format (RIF),

259–260, 506–507
Rule Interchange Format (RIF)

Working Group, 231, 259–260
Rule Markup Language (RuleML)

Initiative, 233–234, 237
ruleml namespace, 537
rules, 231–232

defined, 232
Jena, 257–258, 270, 287
languages, 233–234, 259
ontology translation, 365
OWL RL, 162
reasoners. See reasoners
SWRL. See Semantic Web Rule

Language (SWRL)
rules engines, 12–13, 147–148
runJenaRule function, 57
runPellet function, 55
runQuery function, 45

S
safe CURIE notation, 400
SAIL (Sesame Storage and Inference

Layer), 156
sameIndividualAtom keyword, 242,

554
SameIndividualAtom keyword, 554
Sanchez, Elie, 509
SAWSDL (Semantic Annotations for

WSDL), 422, 426, 432–433
example, 433–434
tools, 434–435

SAWSDL4J API, 434–435
scalability in knowledgebase

performance, 157–158

Scalable Highly Expressive
Reasoner (SHER), 514

schemagen class, 271–272
schemas

RDF Schema. See RDF Schema
(RDFS)

relational databases, 9
XML, 329

screen scraping, 30
search engines, 95–96, 190–192
searchAndNavigateData method,

284
searching, 185–186

in Jena, 283–285
Semantic Web, 190–192

SELECT statement
DISTINCT modifier, 209–210
essentials, 197–201
FILTER modifier, 213, 215
named graphs, 202–208
OFFSET and LIMIT modifiers,

211–213
OPTIONAL modifier, 215–219
ORDER BY modifier, 210–211
REDUCED modifier, 210
SPARQL, 193, 196
UNION statements, 219–222

self-restrictions, 130
Semantic Annotations for WSDL

(SAWSDL), 422, 426, 432–433
example, 433–434
tools, 434–435

Semantic Interoperability of
Metadata and Information in
unLike Environments (Simile),
515

Semantic Markup for Web Services
(OWL-S), 422, 427–429

semantic-mediawiki.org, 26–27
semantic query endpoints, 32
Semantic Radar, 30–32
Semantic Search, 32–33
Semantic Services, 421–422

background, 422–424



Hebeler bindex.tex V1 - 03/11/2009 1:24pm Page 609

Index ■ S 609

composition, 425–426
coordinating, 478–479
discovery, 424
error handling, 425
implementing, 426–427
invocation, 424–425
monitoring, 425
negotiation, 425
Semantic Annotations for WSDL,

432–435
Semantic Markup for Web

Services, 427–429
Web Service Modeling Ontology,

429–432
Semantic Web, 93–94

components, 141–143
concept map, 3–4
defining, 4–10
FOAF project, 29–31
frameworks, 36–37, 143–144
hype, 22–23
information sharing, 97–98
motivating factors, 94–98
myths, 21–22
origins, 23–26
programming components, 10–13
programming impacts, 13–19
RDF, 98–102
roadblocks, 19–21
Semantic Query Endpoint, 32
Semantic Search, 32–33
twine, 27–28
wikis, 26–27
vs. World Wide Web, 7

Semantic Web Rule Language
(SWRL), 231, 471, 533

abstract syntax, 235–237
aligning ontologies with, 372–376
built-ins, 244–245, 471
comparisons and booleans

operations, 537–538
date, time, and duration

operations, 543–547
DL-safe rules, 245–253

essentials, 234–235
examples, 533–536
frameworks, 13
keywords, 549–554
list operations, 548–549
mathematics operations, 538–540
namespaces, 536–537
ontological mediation, 252–257
RDF examples, 243–244, 533–535
string operations, 540–542
tips, 251
URIs operations, 547–548
XML concrete syntax, 237–243

Semantic Web Services Language
(SWSL) Rules, 234

semantically equivalent ontologies,
50–51

Semantically-Interlinked Online
Communities (SIOC) ontology,
495, 502

semantics, 93–94
defined, 4
motivating factors, 94–98
OWL, 147–148

backward chaining, 152–153
forward chaining, 148–153

pipes, 497
programming, 14–16
RDF, 98–102
sharing information, 65–67

semicolons (;)
SPARQL, 198
Turtle, 79, 349

SerializableModel class, 297–298
serializations, 66–67, 74

Java, 352
Jena, 297–298
RDF, 520–521

N-Triples, 81–82
quick hack, 82–84
RDF/XML syntax, 74–78
Turtle, 78–81

serialize method, 352
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SeRQL (Sesame RDF Query
Language), 192

service chaining, 423
Service class, 427
service-level agreements (SLAs), 425
service-oriented architecture (SOA),

422, 426
ServiceGrounding class, 427–429
ServiceModel class, 427–428
ServiceProfile class, 427–428
Sesame RDF Framework, 143, 146,

153–155
Sesame RDF Query Language

(SeRQL), 192
Sesame Storage and Inference Layer

(SAIL), 156
set operations, 124–125, 134–135
setEventListener method, 293
setX method, 458
setY method, 458
‘‘Seven Bridges of Konigsberg’’

(Euler), 24
sharing information, 16–17, 389

description, 97–98
across domain and application

boundaries, 174–175
eRDF, 392–395
microformats, 390–392
RDF transformational tools,

404–405
RDFa, 395

attributes, 396–402
blank nodes, 402–403
language support, 403–404

SPARQL endpoints, 404–408
syntax and semantics, 65–67
xOperator, 408–411

SHER (Scalable Highly Expressive
Reasoner), 514

shorthand features
RDF/XML syntax, 77–78
Turtle, 81

Simile (Semantic Interoperability of
Metadata and Information in
unLike Environments), 515

sin operation, 540
Sindice search engine, 190
SIOC (Semantically-Interlinked

Online Communities) ontology,
495, 502

size method, 291, 297
SLAs (service-level agreements), 425
slashes (/)

FOAF, 43
Jena rules, 258
XPath expressions, 313–314

slice result sets, 213
Smack API, 308
Snoggle tool, 252–253

mapping with, 253–255
rules, 256–257

SOA (service-oriented architecture),
422, 426

Software Development Kit (SDK), 36
‘‘sort of’’ relationships, 509
source documents in XSLT, 317
-Source interfaces, 367–369
SourceCollection class, 367
SourceForge site, 429
sources in ontology mapping, 253
space. See spatiotemporal data
SPAN ontologies, 177
SPARQL (SPARQL Protocol and

RDF Query Language), 32–33,
147, 192

aggregation, 228
ASK statement, 225–226
CONSTRUCT statement, 222–224
data modification, 228
debugging, 201–202
DESCRIBE statement, 224–225
endpoints, 192, 202, 404–408,

499–500
entailments, 226–227
examples, 555–560
keywords, 563–565
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modifiers, 208–222
operators, 560–562
query forms, 196–197
quickstart, 192–196
for RDF, 470–471
SELECT. See SELECT statement
subqueries, 228
unsupported functionality, 228
xOperator, 408–411

SPARQL Recommendation, 192
SpatialGraph class, 454–457, 465
spatiotemporal data, 437–440,

450–451
example, 461–465
queries, 453–461
representing, 441–449
working with, 452–453

special features
RDF/XML syntax, 77–78
Turtle, 81

species of owls, 174–175
square brackets ([]) in XPath

expressions, 314
SquirrelRDF tool, 338
src attribute, 399
startsWith operation, 541
Statement interface, 573–574
statements

alignment, 52–55
components, 68
description, 10–11
instance, 15–16
Jena, 270–271
N-Triples, 81
overview, 6–8
as points, 73–74
RDF, 88, 519–520
RDF/XML syntax, 76
reification, 485
Turtle, 79

StmtIterator interface, 574
storage

in data development life cycle,
267

forward chaining, 150
RDF, 144–146, 155–156

strConcat method, 258, 287, 373
streaming RDF writers, 346–351
Streaming Transformations for XML

(STX) project, 327
StreamResult class, 321
StreamSource class, 321
strigiformes, 174–175
StringBuffer class, 285
stringConcat operation, 541
stringEqualIgnoreCase operation,

541
stringLength operation, 542
strings

OWL, 122
SWRL, 471, 540–542

Structured Query Language (SQL)
queries, 66

STX (Streaming Transformations for
XML) project, 327

stylesheet definitions, 312
subclass-of relationships, 112
subclasses vs. instances, 112–113
subgraph queries, 206
subjects

Jena, 270
RDF, 519
in statements, 10–11, 68
Turtle, 79

sublist operation, 549
subqueries, 206, 228
substring operation, 542
substringAfter operation, 542
substringBefore operation, 542
subtract operation, 540
subtractDates operation, 545
subtractDateTimesYielding

DayTimeDuration operation,
545

subtractDateTimesYieldingYear
MonthDuration operation,
545



Hebeler bindex.tex V1 - 03/11/2009 1:24pm Page 612

612 Index ■ S–T

subtractDayTimeDurationFromDate
operation, 546

subtractDayTimeDurationFrom
DateTime operation, 546

subtractDayTimeDurationFromTime
operation, 546

subtractDayTimeDurations
operation, 546

subtraction in SPARQL, 215
subtractTimes operation, 546
subtractYearMonthDurationFromDate

operation, 546–547
subtractYearMonthDurationFromDateTime

operation, 547
subtractYearMonthDurations

operation, 547
Suggested Upper Merged Ontology

(SUMO), 179
sum function, 228
supportsTransactions method, 292
Swift OWLIM store, 156
Swoogle search engine, 181, 190–192
SWRL. See Semantic Web Rule

Language (SWRL)
swrlb namespace, 537
SWRLTab, 250
.swrlx file extension, 254
swrlx namespace, 537
SWS. See Semantic Services
SWSE search engine, 190
SWSL (Semantic Web Services

Language) Rules, 234
symmetric properties, 119–120
syntactically different ontologies,

50–51
syntax, 15

RDF/XML, 74–78
vs. semantics, 94
sharing information, 65–67
SWRL

abstract, 235–237
XML. See XML (Extensible

Markup Language)

T
Tabet, Said, 234
tabular format in Disco, 188
Tabulator Extension for Firefox, 187,

493–494
tagging systems

limitations, 4–5, 15
overview, 472–474

tar files, 583
taxonomies in RDF, 99–100
templates

velocity, 334–335
XML, 312

temporal information. See
spatiotemporal data

TemporalGraph class, 462, 464–465
TemporalTriple class, 463–464
TemporalTripleIndex class,

462–464
ternary operations in SPARQL, 215
Terse RDF Triple Language (Turtle),

74, 520
FOAF project, 29–30
serializations, 78–81
SWRL example, 536

text element, 319
Thing class, 47
time data. See spatiotemporal data
time operation, 547
time operations in SWRL, 543–547
time type in OWL, 122, 441
tokenize operation, 542
TONES Ontology Repository, 181
top properties, 116
Torrent2RDF application, 405
toString method, 355
‘‘Towards LarKC: A Platform for

Web-Scale Reasoning’’, 513–514
transaction time, 440–441
transaction time-bounded queries,

461–465
transactionModel method, 294
transactions in Jena, 292–295
transformations



Hebeler bindex.tex V1 - 03/11/2009 1:24pm Page 613

Index ■ T–U 613

RDF tools, 404–405
XML. See XSL Transformations

(XSLT)
Transformer class, 321
TransformerFactory class, 321
transformerOutputStream class, 321
transitive properties, 119–120
translate operation, 542
translation

ad hoc, 366
explicit, 365–366
between representations, 304–307
rules for, 365

translators, 478–479
transparency in PML, 511
trees

merging, 72
spatial data, 452
XML, 309

trinary operations in SPARQL, 215,
562

triple stores, 142
triples

Disco, 187
RDF, 72, 144–145, 187
reification, 449
SPARQL, 198
in statements, 10–11, 68
Turtle, 79

trust, 510–513
truth maintenance in forward

chaining, 150–151
try/catch statements, 294
Tsarkov, Dmitry, 157
Tufte, Edward, 514
Turtle (Terse RDF Triple Language),

74, 520
FOAF project, 29–30
serializations, 78–81
SWRL example, 536

TurtleWriter class, 346, 348–351
Twine, 27–28
typeof attribute, 401–402

U
UDDI (Universal Description,

Discovery and Integration),
423–424

UML diagrams, 367–368
unary operations in SPARQL, 215,

560
unaryMinus operation, 540
unaryPlus operation, 540
‘‘uncle’’ problem, 232
Uniform Resource Identifiers (URIs),

70
consistent, 481–482
creating, 480
description, 10–11
different, 138
N-Triples, 81
OWL, 122
RDF, 86
resolvable, 483
SWRL, 547–548
unique, 480–481
XML, 329–330

Uniform Resource Locators (URLs),
7, 11, 70

Uniform Resource Names (URNs),
11, 70

union method, 283
union-of operation, 125, 134–135
union operation in XPath

expressions, 314–315
UNION statements, 219–222
unique artifacts, 17
unique resolvable names, 17
unique URIs, 480–481
units of measurement

properties and datatypes, 484
specifying, 483–484
statement reification, 485
value containers, 485–486

unity property, 495
Universal Description, Discovery

and Integration (UDDI), 423–424
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Universal Resource Locators
(URLs), 7, 11, 70

Unmarshaller class, 333
unmarshalling XML data into Java,

331–333
unnecessary complexity, 23
unstructured data, annotating,

472–477
unsupported functionality in

SPARQL, 228
Upcoming.org XML web service,

308, 358–359
UpcomingEventSource class, 369,

381
upper ontologies, 175–183
uppercase operation, 542
URIs. See Uniform Resource

Identifiers (URIs)
URLs (Universal Resource

Locators), 7, 11, 70
URNs (Uniform Resource Names),

11, 70
Use Cases and Requirements (UCR),

260
‘‘Using Vampire to Reason with

OWL’’ (Tsarkov, Riazanov,
Bechhofer, and Horrocks), 157

UTF-8 encoding, 312

V
valid time, 440
validate method, 289
validateDataFromModel method,

289
ValidityReport interface, 574
value containers, 485–486
value restrictions, 127–131
Vampire reasoning engine, 157
var keyword, 238, 554
Variable keyword, 554
variables

existential, 84
Jena rules, 258
SPARQL, 194–196

SWRL, 236, 251
XML, 238

varying data in data translation,
306

Velocity template engine
exposing XML, 333–336

benefits and costs, 336–337
Java bindings, 329–331
unmarshalling XML data into

Java, 331–333
installation guide, 583

VelocityContext class, 334–335
VelocityEngine class, 334
Venn diagrams, 226–227
versioning ontologies, 493–494
vertical bar characters (|) in XPath

expressions, 314
Virtuoso Universal Server

application, 406
Visual Display of Quantitative

Information (Tufte), 514
visualization

future possibilities, 514–517
Semantic Services node, 478–479

vocabularies, 6, 8
creating, 47
RDF, 99–102
selecting, 43

volume in data translation,
306–307

W
Watson search engine, 190
Watterson, Bill, 467
weather.gov site

XML feeds
overview, 310–311
RDF generators for, 356–358

XSL Transformations. See XSL
Transformations (XSLT)

WeatherToRdfWithJaxb class,
331–332

WeatherToRdfWithXslt class,
320–321
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web browsers
navigation, 186–187
RDF, 146

Web data-centric perspective, 13–14
Web Rule Language (WRL), 234
Web Service Execution Environment

(WSMX), 429–431
Web Service Modeling Language

(WSML), 429
Web Service Modeling Ontology

(WSMO), 422, 426, 429–432
web services, 421, 423–424
Welkin tool, 515
when element, 319
WHERE clause, 193, 197–198, 200
wikis, semantic, 26–27
WordNet tool, 505
WordPress blogs, 307

D2RQ for, 338–346
database queries, 342–345
for Facebook, 367
mappings, 339–341
relational databases, 308
for wrapping instances, 341–342

WordPressSource class, 369, 377, 381
WordPressToRdfWithD2RQ class,

341–342
workflow in Semantic Services,

425–426
World Wide Web (WWW)

vs. Semantic Web, 7
understanding, 95–96

wrapper objects, 321
wrapping D2RQ instances in Jena

model, 341–342
write method, 83, 290
writeData method, 290
writeHasEmailAddressProperty

method, 413
writeIsNamedProperty method,

412
WRL (Web Rule Language), 234
WSDL

in SAWSDL, 432–435

Servicegrounding, 429
web services, 422–424

WsdlGrounding class, 429
WSML (Web Service Modeling

Language), 429
WSMO (Web Service Modeling

Ontology), 422, 426, 429–432
WSMOStudio editor, 435
WSMX (Web Service Execution

Environment), 429–431
WWW (World Wide Web)

vs. Semantic Web, 7
understanding, 95–96

www.foaf-project.org, 29–30
www.trueknowledge.com, 32–33
www.twine.com, 27–28

X
XFN (XHTML Friends Network),

392
XMDR (eXtended MetaData

Registry), 492
XML (Extensible Markup

Language), 66–67
Aduna taxonomy, 515
bindings and velocity, 328–329

benefits and costs, 336–337
Java, 329–331
unmarshalling XML data into

Java, 331–333
Velocity template engine,

333–336
for Facebook, 307–308
moving to RDF, 309–310
RDF/XML syntax, 74–78
syntax, 237–238

body element, 239
builtinAtom element, 243
classAtom element, 240–241, 251
datarangeAtom element, 241
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XML (Extensible Markup
Language), (continued)

datavaluedPropertyAtom
element, 242

differentIndividualsAtom
element, 243

head element, 240
imp element, 239
individualPropertyAtom

element, 241–242
rlab element, 239

sameIndividualAtom element,
242

var element, 238
tags, 403–404
weather.gov XML feeds, 310–311
XML bindings and velocity,

328–337
XSL Transformations. See XSL

Transformations (XSLT)
XML data type in OWL, 122
xml:lang tag, 77
XML Path (XPath) patterns, 313–315
XML Schema Datatypes (XSD), 77
XML Stylesheet Transformations

(XSLTs), 67
xmlns attribute, 396
XMPP (Extensible Messaging and

Presence Protocol), 308, 408–409
xOperator, 408–411
XOXO microformat, 392
XPath (XML Path) patterns, 313–315
XSD (XML Schema Datatypes), 77
xsd prefix, 100–101, 526
xsd:anyUri type, 122
xsd:Boolean type, 122
xsd:dateTime type, 122
xsd:decimal type, 122
xsd:float type, 122
xsd:fractionDigits facet restriction,

123
xsd:fractionDigitsN facet restriction,

530
xsd:integer type, 122

xsd:language type, 122
xsd:length facet restriction, 123, 530
xsd:maxExclusive facet restriction,

123, 530
xsd:maxInclusive facet restriction,

123, 530
xsd:maxLength facet restriction, 123,

530
xsd:minExclusive facet restriction,

123, 530
xsd:minInclusive facet restriction,

123, 530
xsd:minLength facet restriction, 123,

530
xsd:pattern facet restriction, 123, 530
xsd:real type, 122
xsd:string type, 122, 128
xsd:token type, 122
xsd:totalDigits facet restriction, 123,

530
xsl:for-each element, 324
xsl:if element, 317
xsl:output element, 312
xsl:stylesheet element, 312
xsl:template element, 312, 324
XSL Transformations (XSLT),

310–311
aligning ontologies with, 376–381
benefits and costs, 326–327
example application, 315–319
with Facebook data source,

322–326
programmatic processing, 319–322
traversing XML documents with

XPath, 313–315
xsl:value-of element, 317

Y
Yahoo Pipes, 497
yearMonthDuration operation, 547
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